Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury

被引:23
|
作者
Ghazale, Hussein [1 ]
Ramadan, Naify [1 ]
Mantash, Sara [1 ]
Zibara, Kazem [2 ,3 ]
El-Sitt, Sally [1 ]
Darwish, Hala [1 ]
Chamaa, Farah [4 ]
Boustany, Rose Mary [1 ,6 ,7 ,8 ]
Mondello, Stefania [9 ]
Abou-Kheir, Wassim [4 ]
Soueid, Jihane [1 ]
Kobeissy, Firas [1 ,5 ]
机构
[1] Amer Univ Beirut, Fac Med, Dept Biochem & Mol Genet, Beirut, Lebanon
[2] Lebanese Univ, DSST, Lab Stem Cells, ER045, Beirut, Lebanon
[3] Lebanese Univ, Fac Sci 1, Dept Biol, Beirut, Lebanon
[4] Amer Univ Beirut, Fac Med, Dept Anat Cell Biol & Physiol Sci, Beirut, Lebanon
[5] Univ Florida, Ctr Neuroprote & Biomarkers Res, Dept Psychiat, Gainesville, FL USA
[6] Amer Univ Beirut Med Ctr, Special Kids Clin, Neurogenet Program, Beirut, Lebanon
[7] Amer Univ Beirut Med Ctr, Special Kids Clin, Div Pediat Neurol, Dept Pediat, Beirut, Lebanon
[8] Amer Univ Beirut Med Ctr, Special Kids Clin, Div Pediat Neurol, Dept Adolescent Med, Beirut, Lebanon
[9] Univ Messina, AOU Policlin G Martino, Dept Biomed & Dent Sci & Morphofunct Imaging, Via Consolare Valeria, I-98125 Messina, Italy
关键词
Traumatic brain injury; Neural stem cells; Docosahexaenoic acid; Neurogenesis; Reactive ghosts; Motor function; CENTRAL-NERVOUS-SYSTEM; CONTROLLED CORTICAL IMPACT; STEM/PROGENITOR CELLS; NEURONAL DIFFERENTIATION; IN-VITRO; PROGENITOR CELLS; MOUSE MODEL; AGED RATS; HIPPOCAMPAL NEUROGENESIS; BREAKDOWN PRODUCTS;
D O I
10.1016/j.bbr.2017.11.007
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide with 1.5 million people inflicted yearly. Several neurotherapeutic interventions have been proposed including drug administration as well as cellular therapy involving neural stem cells (NSCs). Among the proposed drugs is docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibiting neuroprotective properties. In this study, we utilized an innovative intervention of neonatal NSCs transplantation in combination with DHA injections in order to ameliorate brain damage and promote functional recovery in an experimental model of TBI. Thus, NSCs derived from the sub ventricular zone of neonatal pups were cultured into neurospheres and transplanted in the cortex of an experimentally controlled cortical impact mouse model of TBI. The effect of NSC transplantation was assessed alone and/or in combination with DHA administration. Motor deficits were evaluated using pole climbing and rotarod tests. Using immunohistochemistry, the effect of transplanted NSCs and DHA treatment was used to assess astrocytic (Glial fibrillary acidic protein, GFAP) and microglial (ionized calcium binding adaptor molecule-1, IBA-1) activity. In addition, we quantified neuroblasts (doublecortin; DCX) and dopaminergic neurons (tyrosine hydroxylase; TH) expression levels. Combined NSC transplantation and DHA injections significantly attenuated TBI-induced motor function deficits (pole climbing test), promoted neurogenesis, coupled with an increase in glial reactivity at the cortical site of injury. In addition, the number of tyrosine hydroxylase positive neurons was found to increase markedly in the ventral tegmental area and substantia nigra in the combination therapy group. Immunoblotting analysis indicated that DHA + NSCs treated animals showed decreased levels of 38 kDa GFAP-BDP (breakdown product) and 145 kDa all-spectrin SBDP indicative of attenuated calpain/caspase activation. These data demonstrate that prior treatment with DHA may be a desirable strategy to improve the therapeutic efficacy of NSC transplantation in TBI.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] New insights into the biological roles of immune cells in neural stem cells in post-traumatic injury of the central nervous system
    He, Ning
    Mao, Xing-Jia
    Ding, Yue-Min
    Zuo, Tong
    Chen, Ying-Ying
    Wang, Lin-Lin
    NEURAL REGENERATION RESEARCH, 2023, 18 (09) : 1908 - 1916
  • [42] Thyroid function in the subacute phase of traumatic brain injury: a potential predictor of post-traumatic neurological and functional outcomes
    C. Mele
    L. Pagano
    D. Franciotta
    M. Caputo
    A. Nardone
    G. Aimaretti
    P. Marzullo
    V. Pingue
    Journal of Endocrinological Investigation, 2022, 45 : 379 - 389
  • [43] Linking Traumatic Brain Injury, Sleep Disruption and Post-Traumatic Headache: a Potential Role for Glymphatic Pathway Dysfunction
    Juan Piantino
    Miranda M. Lim
    Craig D. Newgard
    Jeffrey Iliff
    Current Pain and Headache Reports, 2019, 23
  • [44] Thyroid function in the subacute phase of traumatic brain injury: a potential predictor of post-traumatic neurological and functional outcomes
    Mele, C.
    Pagano, L.
    Franciotta, D.
    Caputo, M.
    Nardone, A.
    Aimaretti, G.
    Marzullo, P.
    Pingue, V.
    JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2022, 45 (02) : 379 - 389
  • [45] Linking Traumatic Brain Injury, Sleep Disruption and Post-Traumatic Headache: a Potential Role for Glymphatic Pathway Dysfunction
    Piantino, Juan
    Lim, Miranda M.
    Newgard, Craig D.
    Iliff, Jeffrey
    CURRENT PAIN AND HEADACHE REPORTS, 2019, 23 (09)
  • [46] Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke
    van Velthoven, Cindy T. J.
    Sheldon, R. Ann
    Kavelaars, Annemieke
    Derugin, Nikita
    Vexler, Zinaida S.
    Willemen, Hanneke L. D. M.
    Maas, Mirjam
    Heijnen, Cobi J.
    Ferriero, Donna M.
    STROKE, 2013, 44 (05) : 1426 - 1432
  • [47] Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis
    Kempuraj, Duraisamy
    Selvakumar, Govindhasamy P.
    Thangavel, Ramasamy
    Ahmed, Mohammad E.
    Zaheer, Smita
    Raikwar, Sudhanshu P.
    Iyer, Shankar S.
    Bhagavan, Sachin M.
    Beladakere-Ramaswamy, Swathi
    Zaheer, Asgar
    FRONTIERS IN NEUROSCIENCE, 2017, 11
  • [48] Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury
    Anbari, Fatemeh
    Khalili, Mohammad Ali
    Bahrami, Ahmad Reza
    Khoradmehr, Arezoo
    Sadeghian, Fatemeh
    Fesahat, Farzaneh
    Nabi, Ali
    NEURAL REGENERATION RESEARCH, 2014, 9 (09) : 919 - 923
  • [49] Human Neural Stem Cell Transplantation-Mediated Alteration of Microglial/Macrophage Phenotypes After Traumatic Brain Injury
    Gao, Junling
    Grill, Raymond J.
    Dunn, Tiffany J.
    Bedi, Supinder
    Labastida, Javier Allende
    Hetz, Robert A.
    Xue, Hasen
    Thonhoff, Jason R.
    DeWitt, Douglas S.
    Prough, Donald S.
    Cox, Charles S., Jr.
    Wu, Ping
    CELL TRANSPLANTATION, 2016, 25 (10) : 1863 - 1877
  • [50] Mesenchymal Stem-Cell Transplantation for Hypoxic-Ischemic Brain Injury in Neonatal Rat Model
    Lee, Jin A.
    Kim, Beyong Il
    Jo, Chris Hyunchul
    Choi, Chang Won
    Kim, Ee-Kyung
    Kim, Han-Suk
    Yoon, Kang-Sup
    Choi, Jung-Hwan
    PEDIATRIC RESEARCH, 2010, 67 (01) : 42 - 46