Thermoelectricity and thermodiffusion in charged colloids

被引:45
|
作者
Huang, B. T. [1 ]
Roger, M. [1 ]
Bonetti, M. [1 ]
Salez, T. J. [1 ,2 ]
Wiertel-Gasquet, C. [1 ]
Dubois, E. [3 ]
Gomes, R. Cabreira [3 ,4 ,5 ]
Demouchy, G. [3 ,6 ]
Meriguet, G. [3 ]
Peyre, V. [3 ]
Kouyate, M. [3 ]
Filomeno, C. L. [3 ,4 ,5 ]
Depeyrot, J. [4 ,5 ]
Tourinho, F. A. [4 ,5 ]
Perzynski, R. [3 ]
Nakamae, S. [1 ]
机构
[1] CEA Saclay, CEA IRAMIS SPEC, Serv Phys Etat Condense, CNRS,UMR 3680, F-91191 Gif Sur Yvette, France
[2] Ecole Ponts ParisTech, F-77455 Marne La Vallee, France
[3] Univ Paris 06, Sorbonne Univ, CNRS, Lab PHENIX, F-75005 Paris, France
[4] Univ Brasilia, Inst Fis, Grp Fluidos Complexos, BR-70904970 Brasilia, DF, Brazil
[5] Univ Brasilia, Inst Quim, BR-70904970 Brasilia, DF, Brazil
[6] Univ Cergy Pontoise, Dept Phys, F-95011 Cergy Pontoise, France
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 143卷 / 05期
关键词
TEMPERATURE-GRADIENT; THERMOPHORESIS; FERROFLUIDS; DIFFUSION; LIQUIDS; SPHERES; POWER;
D O I
10.1063/1.4927665
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Seebeck and Soret coefficients of ionically stabilized suspension of maghemite nanoparticles in dimethyl sulfoxide are experimentally studied as a function of nanoparticle volume fraction. In the presence of a temperature gradient, the charged colloidal nanoparticles experience both thermal drift due to their interactions with the solvent and electric forces proportional to the internal thermoelectric field. The resulting thermodiffusion of nanoparticles is observed through forced Rayleigh scattering measurements, while the thermoelectric field is accessed through voltage measurements in a thermocell. Both techniques provide independent estimates of nanoparticle's entropy of transfer as high as 82 meV K-1. Such a property may be used to improve the thermoelectric coefficients in liquid thermocells. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Complexation of Charged Colloids with Polyelectrolyte Stars
    Jusufi, Arben
    Konieczny, Martin
    Likos, Christos N.
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2012, 226 (7-8): : 585 - 596
  • [42] Computer simulations of charged colloids in confinement
    Puertas, Antonio M.
    Javier de las Nieves, F.
    Cuetos, Alejandro
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 440 : 292 - 298
  • [43] Virial expansion for charged colloids and electrolytes
    Moreira, AG
    Netz, RR
    EUROPEAN PHYSICAL JOURNAL D, 2002, 21 (01): : 83 - 96
  • [44] On the viscosity of concentrated suspensions of charged colloids
    Berli, CLA
    Deiber, JA
    Quemada, D
    LATIN AMERICAN APPLIED RESEARCH, 2005, 35 (01) : 15 - 22
  • [45] Epitaxial crystal growth of charged colloids
    Hoogenboom, JP
    Yethiraj, A
    van Langen-Suurling, AK
    Romijn, J
    van Blaaderen, A
    PHYSICAL REVIEW LETTERS, 2002, 89 (25) : 1 - 256104
  • [46] Stability of the hexagonal lattice of charged colloids
    Dobnikar, J.
    Ziherl, P.
    JOURNAL OF MOLECULAR LIQUIDS, 2007, 131 (173-178) : 173 - 178
  • [47] Virial expansion for charged colloids and electrolytes
    A.G. Moreira
    R.R. Netz
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2002, 21 : 83 - 96
  • [48] Interdiffusion and crystallization of oppositely charged colloids
    Cerbelaud, Manuella
    Cong Tam Tran
    Ferrando, Riccardo
    Crespin, Benoit
    Videcoq, Arnaud
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (46) : 31094 - 31102
  • [49] Fractal heteroaggregation of oppositely charged colloids
    Kim, AY
    Berg, JC
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2000, 229 (02) : 607 - 614
  • [50] Adsorption of weakly charged polyelectrolytes onto oppositely charged spherical colloids
    Winkler, Roland G.
    Cherstvy, Andrey G.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (29): : 8486 - 8493