Thermoelectricity and thermodiffusion in charged colloids

被引:45
|
作者
Huang, B. T. [1 ]
Roger, M. [1 ]
Bonetti, M. [1 ]
Salez, T. J. [1 ,2 ]
Wiertel-Gasquet, C. [1 ]
Dubois, E. [3 ]
Gomes, R. Cabreira [3 ,4 ,5 ]
Demouchy, G. [3 ,6 ]
Meriguet, G. [3 ]
Peyre, V. [3 ]
Kouyate, M. [3 ]
Filomeno, C. L. [3 ,4 ,5 ]
Depeyrot, J. [4 ,5 ]
Tourinho, F. A. [4 ,5 ]
Perzynski, R. [3 ]
Nakamae, S. [1 ]
机构
[1] CEA Saclay, CEA IRAMIS SPEC, Serv Phys Etat Condense, CNRS,UMR 3680, F-91191 Gif Sur Yvette, France
[2] Ecole Ponts ParisTech, F-77455 Marne La Vallee, France
[3] Univ Paris 06, Sorbonne Univ, CNRS, Lab PHENIX, F-75005 Paris, France
[4] Univ Brasilia, Inst Fis, Grp Fluidos Complexos, BR-70904970 Brasilia, DF, Brazil
[5] Univ Brasilia, Inst Quim, BR-70904970 Brasilia, DF, Brazil
[6] Univ Cergy Pontoise, Dept Phys, F-95011 Cergy Pontoise, France
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 143卷 / 05期
关键词
TEMPERATURE-GRADIENT; THERMOPHORESIS; FERROFLUIDS; DIFFUSION; LIQUIDS; SPHERES; POWER;
D O I
10.1063/1.4927665
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Seebeck and Soret coefficients of ionically stabilized suspension of maghemite nanoparticles in dimethyl sulfoxide are experimentally studied as a function of nanoparticle volume fraction. In the presence of a temperature gradient, the charged colloidal nanoparticles experience both thermal drift due to their interactions with the solvent and electric forces proportional to the internal thermoelectric field. The resulting thermodiffusion of nanoparticles is observed through forced Rayleigh scattering measurements, while the thermoelectric field is accessed through voltage measurements in a thermocell. Both techniques provide independent estimates of nanoparticle's entropy of transfer as high as 82 meV K-1. Such a property may be used to improve the thermoelectric coefficients in liquid thermocells. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Charged colloids on parallel planar layers
    Contreras-Aburto, C
    Méndez-Alcaraz, JM
    Castañeda-Priego, R
    ADVANCED SUMMER SCHOOL IN PHYSICS 2005: FRONTIERS IN CONTEMPORARY PHYSICS, 2006, 809 : 234 - +
  • [32] Consolidation of Charged Colloids during Drying
    Sarkar, Arijit
    Tirumkudulu, Mahesh S.
    LANGMUIR, 2009, 25 (09) : 4945 - 4953
  • [33] Freezing of charged colloids in slit pores
    Grandner, Stefan
    Klapp, Sabine H. L.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (24):
  • [34] Interactions between charged colloids and polyelectrolytes
    Kötz, J
    TAPPI ADVANCED COATING FUNDAMENTALS SYMPOSIUM, 1999, : 173 - 173
  • [35] Diffusion in binary suspensions of charged colloids
    Nagasaki, S
    Tanaka, S
    Todoriki, M
    Suzuki, A
    JOURNAL OF CONTAMINANT HYDROLOGY, 1998, 35 (1-3) : 277 - 284
  • [36] Homogeneous to inhomogeneous transition in charged colloids
    Tata, BVR
    Ise, N
    PHYSICAL REVIEW B, 1996, 54 (09) : 6050 - 6053
  • [37] Field theory for charged fluids and colloids
    Netz, RR
    Orland, H
    EUROPHYSICS LETTERS, 1999, 45 (06): : 726 - 732
  • [38] Point defects in crystals of charged colloids
    Alkemade, Rinske M.
    de Jager, Marjolein
    van der Meer, Berend
    Smallenburg, Frank
    Filion, Laura
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (16):
  • [39] Simulation of polyelectrolytes and charged colloids in solution
    Stevens, MJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 86 - COLL
  • [40] ROLE OF CHARGED COLLOIDS IN FLOC FORMATION
    ROBERTS, EJ
    GODSHALL, MA
    INTERNATIONAL SUGAR JOURNAL, 1978, 80 (952): : 105 - 109