Thermoelectricity and thermodiffusion in charged colloids

被引:45
|
作者
Huang, B. T. [1 ]
Roger, M. [1 ]
Bonetti, M. [1 ]
Salez, T. J. [1 ,2 ]
Wiertel-Gasquet, C. [1 ]
Dubois, E. [3 ]
Gomes, R. Cabreira [3 ,4 ,5 ]
Demouchy, G. [3 ,6 ]
Meriguet, G. [3 ]
Peyre, V. [3 ]
Kouyate, M. [3 ]
Filomeno, C. L. [3 ,4 ,5 ]
Depeyrot, J. [4 ,5 ]
Tourinho, F. A. [4 ,5 ]
Perzynski, R. [3 ]
Nakamae, S. [1 ]
机构
[1] CEA Saclay, CEA IRAMIS SPEC, Serv Phys Etat Condense, CNRS,UMR 3680, F-91191 Gif Sur Yvette, France
[2] Ecole Ponts ParisTech, F-77455 Marne La Vallee, France
[3] Univ Paris 06, Sorbonne Univ, CNRS, Lab PHENIX, F-75005 Paris, France
[4] Univ Brasilia, Inst Fis, Grp Fluidos Complexos, BR-70904970 Brasilia, DF, Brazil
[5] Univ Brasilia, Inst Quim, BR-70904970 Brasilia, DF, Brazil
[6] Univ Cergy Pontoise, Dept Phys, F-95011 Cergy Pontoise, France
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 143卷 / 05期
关键词
TEMPERATURE-GRADIENT; THERMOPHORESIS; FERROFLUIDS; DIFFUSION; LIQUIDS; SPHERES; POWER;
D O I
10.1063/1.4927665
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Seebeck and Soret coefficients of ionically stabilized suspension of maghemite nanoparticles in dimethyl sulfoxide are experimentally studied as a function of nanoparticle volume fraction. In the presence of a temperature gradient, the charged colloidal nanoparticles experience both thermal drift due to their interactions with the solvent and electric forces proportional to the internal thermoelectric field. The resulting thermodiffusion of nanoparticles is observed through forced Rayleigh scattering measurements, while the thermoelectric field is accessed through voltage measurements in a thermocell. Both techniques provide independent estimates of nanoparticle's entropy of transfer as high as 82 meV K-1. Such a property may be used to improve the thermoelectric coefficients in liquid thermocells. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments
    Lenglet, J
    Bourdon, A
    Bacri, JC
    Demouchy, G
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 031408
  • [22] Thermodiffusion of interacting colloids. I. A statistical thermodynamics approach
    Dhont, JKG
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (03): : 1632 - 1641
  • [23] Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles
    Putnam, Shawn A.
    Cahill, David G.
    Wong, Gerard C. L.
    LANGMUIR, 2007, 23 (18) : 9221 - 9228
  • [24] Correction: Nonequilibrium thermodynamic model of thermoelectricity and thermodiffusion in semiconductors (vol 25, 2023, 6790-6796)
    Semenov, Semen N.
    Schimpf, Martin E.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (32) : 21912 - 21913
  • [25] Tunable Assembly of Heterogeneously Charged Colloids
    Bianchi, Emanuela
    Likos, Christos N.
    Kahl, Gerhard
    NANO LETTERS, 2014, 14 (06) : 3412 - 3418
  • [26] Transport of charged colloids in a nonpolar solvent
    Lin, Tina
    Kodger, Thomas E.
    Weitz, David A.
    SOFT MATTER, 2013, 9 (21) : 5173 - 5177
  • [27] Glass transition of charged polymer colloids
    J Chem Phys, 16 (6613):
  • [28] Charged colloids in an aqueous mixture with a salt
    Okamoto, Ryuichi
    Onuki, Akira
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [29] Structure and dynamics of charged magnetic colloids
    Wagner, J.
    Fischer, B.
    Autenrieth, T.
    Hempelmann, R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (38) : S2697 - S2711
  • [30] Noncentral forces in crystals of charged colloids
    Reinke, D.
    Stark, H.
    von Gruenberg, H.-H.
    Schofield, Andrew B.
    Maret, G.
    Gasser, U.
    PHYSICAL REVIEW LETTERS, 2007, 98 (03)