Thermoelectricity and thermodiffusion in charged colloids

被引:45
作者
Huang, B. T. [1 ]
Roger, M. [1 ]
Bonetti, M. [1 ]
Salez, T. J. [1 ,2 ]
Wiertel-Gasquet, C. [1 ]
Dubois, E. [3 ]
Gomes, R. Cabreira [3 ,4 ,5 ]
Demouchy, G. [3 ,6 ]
Meriguet, G. [3 ]
Peyre, V. [3 ]
Kouyate, M. [3 ]
Filomeno, C. L. [3 ,4 ,5 ]
Depeyrot, J. [4 ,5 ]
Tourinho, F. A. [4 ,5 ]
Perzynski, R. [3 ]
Nakamae, S. [1 ]
机构
[1] CEA Saclay, CEA IRAMIS SPEC, Serv Phys Etat Condense, CNRS,UMR 3680, F-91191 Gif Sur Yvette, France
[2] Ecole Ponts ParisTech, F-77455 Marne La Vallee, France
[3] Univ Paris 06, Sorbonne Univ, CNRS, Lab PHENIX, F-75005 Paris, France
[4] Univ Brasilia, Inst Fis, Grp Fluidos Complexos, BR-70904970 Brasilia, DF, Brazil
[5] Univ Brasilia, Inst Quim, BR-70904970 Brasilia, DF, Brazil
[6] Univ Cergy Pontoise, Dept Phys, F-95011 Cergy Pontoise, France
关键词
TEMPERATURE-GRADIENT; THERMOPHORESIS; FERROFLUIDS; DIFFUSION; LIQUIDS; SPHERES; POWER;
D O I
10.1063/1.4927665
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Seebeck and Soret coefficients of ionically stabilized suspension of maghemite nanoparticles in dimethyl sulfoxide are experimentally studied as a function of nanoparticle volume fraction. In the presence of a temperature gradient, the charged colloidal nanoparticles experience both thermal drift due to their interactions with the solvent and electric forces proportional to the internal thermoelectric field. The resulting thermodiffusion of nanoparticles is observed through forced Rayleigh scattering measurements, while the thermoelectric field is accessed through voltage measurements in a thermocell. Both techniques provide independent estimates of nanoparticle's entropy of transfer as high as 82 meV K-1. Such a property may be used to improve the thermoelectric coefficients in liquid thermocells. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 38 条
  • [21] PREPARATION OF AQUEOUS MAGNETIC LIQUIDS IN ALKALINE AND ACIDIC MEDIA
    MASSART, R
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1981, 17 (02) : 1247 - 1248
  • [22] Soret effect of nonionic surfactants in water studied by different transient grating setups
    Ning, Hui
    Datta, Sascha
    Sottmann, Thomas
    Wiegand, Simone
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (35) : 10927 - 10934
  • [23] Thermal-diffusive behavior of a dilute solution of charged colloids
    Ning, Hui
    Dhont, Jan K. G.
    Wiegand, Simone
    [J]. LANGMUIR, 2008, 24 (06) : 2426 - 2432
  • [24] Thermophoresis in colloidal suspensions
    Piazza, R.
    Parola, A.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (15)
  • [25] Transport of nanoscale latex spheres in a temperature gradient
    Putnam, SA
    Cahill, DG
    [J]. LANGMUIR, 2005, 21 (12) : 5317 - 5323
  • [26] Why Charged Molecules Move Across a Temperature Gradient: The Role of Electric Fields
    Reichl, Maren
    Herzog, Mario
    Goetz, Alexandra
    Braun, Dieter
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (19)
  • [27] Enhanced thermo-electrochemical power using carbon nanotube additives in ionic liquid redox electrolytes
    Salazar, Pablo F.
    Stephens, Sai T.
    Kazim, Ali H.
    Pringle, Jennifer M.
    Cola, Baratunde A.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (48) : 20676 - 20682
  • [28] Experimental, numerical, and theoretical investigation on the concentration-dependent Soret effect in magnetic fluids
    Sprenger, Lisa
    Lange, Adrian
    Zubarev, Andrey Yu.
    Odenbach, Stefan
    [J]. PHYSICS OF FLUIDS, 2015, 27 (02)
  • [29] Thermodiffusion in concentrated ferrofluids: Experimental and numerical results on magnetic thermodiffusion
    Sprenger, Lisa
    Lange, Adrian
    Odenbach, Stefan
    [J]. PHYSICS OF FLUIDS, 2014, 26 (02)
  • [30] Thermodiffusion in ferrofluids regarding thermomagnetic convection
    Sprenger, Lisa
    Lange, Adrian
    Odenbach, Stefan
    [J]. COMPTES RENDUS MECANIQUE, 2013, 341 (4-5): : 429 - 437