Thermoelectricity and thermodiffusion in charged colloids

被引:45
|
作者
Huang, B. T. [1 ]
Roger, M. [1 ]
Bonetti, M. [1 ]
Salez, T. J. [1 ,2 ]
Wiertel-Gasquet, C. [1 ]
Dubois, E. [3 ]
Gomes, R. Cabreira [3 ,4 ,5 ]
Demouchy, G. [3 ,6 ]
Meriguet, G. [3 ]
Peyre, V. [3 ]
Kouyate, M. [3 ]
Filomeno, C. L. [3 ,4 ,5 ]
Depeyrot, J. [4 ,5 ]
Tourinho, F. A. [4 ,5 ]
Perzynski, R. [3 ]
Nakamae, S. [1 ]
机构
[1] CEA Saclay, CEA IRAMIS SPEC, Serv Phys Etat Condense, CNRS,UMR 3680, F-91191 Gif Sur Yvette, France
[2] Ecole Ponts ParisTech, F-77455 Marne La Vallee, France
[3] Univ Paris 06, Sorbonne Univ, CNRS, Lab PHENIX, F-75005 Paris, France
[4] Univ Brasilia, Inst Fis, Grp Fluidos Complexos, BR-70904970 Brasilia, DF, Brazil
[5] Univ Brasilia, Inst Quim, BR-70904970 Brasilia, DF, Brazil
[6] Univ Cergy Pontoise, Dept Phys, F-95011 Cergy Pontoise, France
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 143卷 / 05期
关键词
TEMPERATURE-GRADIENT; THERMOPHORESIS; FERROFLUIDS; DIFFUSION; LIQUIDS; SPHERES; POWER;
D O I
10.1063/1.4927665
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Seebeck and Soret coefficients of ionically stabilized suspension of maghemite nanoparticles in dimethyl sulfoxide are experimentally studied as a function of nanoparticle volume fraction. In the presence of a temperature gradient, the charged colloidal nanoparticles experience both thermal drift due to their interactions with the solvent and electric forces proportional to the internal thermoelectric field. The resulting thermodiffusion of nanoparticles is observed through forced Rayleigh scattering measurements, while the thermoelectric field is accessed through voltage measurements in a thermocell. Both techniques provide independent estimates of nanoparticle's entropy of transfer as high as 82 meV K-1. Such a property may be used to improve the thermoelectric coefficients in liquid thermocells. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Transport in charged colloids driven by thermoelectricity
    Wurger, Alois
    PHYSICAL REVIEW LETTERS, 2008, 101 (10)
  • [2] Thermodiffusion of charged colloids: Single-particle diffusion
    Dhont, Jan K. G.
    Wiegand, S.
    Duhr, S.
    Braun, D.
    LANGMUIR, 2007, 23 (04) : 1674 - 1683
  • [3] Thermodiffusion in positively charged magnetic colloids: Influence of the particle diameter
    Sehnem, A. L.
    Aquino, R.
    Campos, A. F. C.
    Tourinho, F. A.
    Depeyrot, J.
    Figueiredo Neto, A. M.
    PHYSICAL REVIEW E, 2014, 89 (03)
  • [4] Thermodiffusion in magnetic colloids
    Morozov, KI
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 201 : 248 - 251
  • [5] Thermoelectricity and Thermodiffusion in Magnetic Nanofluids: Entropic Analysis
    Salez, Thomas J.
    Nakamae, Sawako
    Perzynski, Regine
    Meriguet, Guillaume
    Cebers, Andrejs
    Roger, Michel
    ENTROPY, 2018, 20 (06)
  • [6] Nonequilibrium thermodynamic model of thermoelectricity and thermodiffusion in semiconductors
    Semenov, Semen N.
    Schimpf, Martin E.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (09) : 6790 - 6796
  • [7] Negative thermodiffusion of polymers and colloids in solvent mixtures
    de Gans, BJ
    Kita, R
    Müller, B
    Wiegand, S
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (17): : 8073 - 8081
  • [8] Thermodiffusion motion of electrically charged nanoparticles
    Mezulis, Ansis
    Maiorov, Mikhail
    Petricenko, Oksana
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2012, 10 (04): : 989 - 994
  • [9] Thermodiffusion of interacting colloids. II. A microscopic approach
    Dhont, JKG
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (03): : 1642 - 1653
  • [10] Charged colloids on spherical substrates
    Cruz-Silva, OH
    González-Mozuelos, P
    Méndez-Alcaraz, JM
    ADVANCED SUMMER SCHOOL IN PHYSICS 2005: FRONTIERS IN CONTEMPORARY PHYSICS, 2006, 809 : 228 - +