Complex traveling wave solutions to the Fisher equation

被引:21
|
作者
Feng, Zhaosheng [1 ]
Li, Yang
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78541 USA
[2] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
traveling waves; first integral; fisher equation; autonomous system;
D O I
10.1016/j.physa.2005.10.058
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
There is the widespread existence of wave phenomena in physics, chemistry and biology. This clearly necessitates a study of traveling waves in depth and of the modeling and analysis involved. In the present paper, we study the Fisher equation by means of the first integral method, which is based on the ring theory of commutative algebra. A traveling wave solution is obtained, which indicates that the analytical solutions in the literature are particular cases of our result. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 50 条
  • [1] On traveling wave solutions of Fisher's equation in two spatial dimensions
    Brazhnik, PK
    Tyson, JJ
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (02) : 371 - 391
  • [2] Traveling wave solutions to a reaction-diffusion equation
    Feng, Zhaosheng
    Zheng, Shenzhou
    Gao, David Y.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 756 - 773
  • [3] Traveling wave solutions to a reaction-diffusion equation
    Zhaosheng Feng
    Shenzhou Zheng
    David Y. Gao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 756 - 773
  • [4] LS method and qualitative analysis of traveling wave solutions of Fisher equation
    Li Xiang-Zheng
    Zhang Wei-Guo
    Yuan San-Ling
    ACTA PHYSICA SINICA, 2010, 59 (02) : 744 - 749
  • [5] The generalized Kudryashov method to obtain exact traveling wave solutions of the PHI-four equation and the Fisher equation
    Mahmud, Forhad
    Samsuzzoha, Md
    Akbar, M. Ali
    RESULTS IN PHYSICS, 2017, 7 : 4296 - 4302
  • [6] BK equation and traveling wave solutions
    de Santana Amaral, J. T.
    Betemps, M. A.
    Ducati, M. B. Gay
    Soyez, G.
    BRAZILIAN JOURNAL OF PHYSICS, 2007, 37 (2B) : 648 - 651
  • [7] A reaction-diffusion equation and its traveling wave solutions
    Feng, Zhaosheng
    Chen, Goong
    Meng, Qingguo
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2010, 45 (06) : 634 - 639
  • [8] A NEW TRAVELING-WAVE SOLUTION OF FISHER EQUATION WITH DENSITY-DEPENDENT DIFFUSIVITY
    HAYES, CK
    JOURNAL OF MATHEMATICAL BIOLOGY, 1991, 29 (06) : 531 - 537
  • [9] Traveling wave solutions for a generalized Ostrovsky equation
    Gandarias, M. L.
    Bruzon, M. S.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (15) : 5840 - 5850
  • [10] Diffusive and inviscid traveling waves of the Fisher equation and nonuniqueness of wave speed
    Hilhorst, Danielle
    Kim, Yong-Jung
    APPLIED MATHEMATICS LETTERS, 2016, 60 : 28 - 35