The complexity of the proper orientation number

被引:16
作者
Ahadi, A. [1 ]
Dehghan, A. [2 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran, Iran
关键词
Computational complexity; Proper orientation; Vertex coloring; NP-completeness; Planar 3-SAT (type 2); Graph orientation; Polynomial algorithms; NP-COMPLETENESS; OUTDEGREE; NETWORK; GRAPHS;
D O I
10.1016/j.ipl.2013.07.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A proper orientation of a graph G = (V, E) is an orientation D of E(G) such that for every two adjacent vertices v and u, d((D) over bar)(v) not equal d((D) over bar)(u) where d((D) over bar)(v) is the number of edges with head v in D. The proper orientation number of G is defined as (chi) over right arrow (G) = min(D is an element of Gamma) max(v is an element of v)(G)d((D) over bar)(v) where Gamma is the set of proper orientations of G. We have chi(G) 1 <= (chi) over right arrow (G) <= Delta(G), where chi(G) and Delta(G) denote the chromatic number and the maximum degree of G, respectively. We show that, it is NP-complete to decide whether (chi) over right arrow (G) = 2, for a given planar graph G. Also, we prove that there is a polynomial time algorithm for determining the proper orientation number of 3-regular graphs. In sharp contrast, we will prove that this problem is NP-hard for 4-regular graphs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:799 / 803
页数:5
相关论文
共 18 条
  • [1] Degree constrained subgraphs
    Addario-Berry, L.
    Dalal, K.
    Reed, B. A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (07) : 1168 - 1174
  • [2] Graph orientation algorithms to minimize the maximum outdegree
    Asahiro, Yuichi
    Miyano, Eiji
    Ono, Hirotaka
    Zenmyo, Kouhei
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2007, 18 (02) : 197 - 215
  • [3] Graph classes and the complexity of the graph orientation minimizing the maximum weighted outdegree
    Asahiro, Yuichi
    Miyano, Eiji
    Ono, Hirotaka
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (07) : 498 - 508
  • [4] Coloring chip configurations on graphs and digraphs
    Borowiecki, Mieczyslaw
    Grytczuk, Jaroslaw
    Pilsniak, Monika
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (1-2) : 1 - 4
  • [5] On colouring the nodes of a network
    Brooks, RL
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 : 194 - 197
  • [6] CHVATAL V, 1978, J COMB THEORY B, V24, P61, DOI 10.1016/0095-8956(78)90078-3
  • [7] Du D.-Z., 2002, Introduction to Computational Complexity
  • [8] The complexity of two graph orientation problems
    Eggemann, Nicole
    Noble, Steven D.
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 513 - 517
  • [9] Gallai T., 1966, THEORY GRAPHS PROC T, P115
  • [10] THE NP-COMPLETENESS OF EDGE-COLORING
    HOLYER, I
    [J]. SIAM JOURNAL ON COMPUTING, 1981, 10 (04) : 718 - 720