Discrete Fourier-Neumann series

被引:0
|
作者
Ciaurri, O [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Computac, Logrono 26004, Spain
关键词
bessel functions; Fourier series; Neumann series; mean convergence; discrete A(p) weights; discrete Hilbert transform;
D O I
10.1016/j.jat.2004.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J(mu) denote the Bessel function of order mu. The system j(n)(x) = {j(n)(x)(s)}(sgreater than or equal to1) = {2rootalpha+2n+1 J(alpha+2n+1)(p(s))/ap(s)\J(alpha+1)(ap(s))\}(sgreater than or equal to1) with n = 0, 1,..., alpha > - 1, and where p(s) denotes the sth positive zero of J(alpha) (ax), is orthonormal in l(2) (N). In this paper, we study the mean convergence of the Fourier series with respect to this system. Also, we describe the space in which the span of the system is dense. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 140
页数:15
相关论文
共 50 条
  • [41] σ-Convergence of Fourier series & its Conjugate series
    Sahu, K. M.
    Soni
    Kumar, Narendra
    Aggarwal, Alok
    2022 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2022,
  • [42] AbsoluteNqα-summability of the series conjugate to a Fourier series
    A. K. Sahoo
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1998, 108 : 251 - 271
  • [43] On the method of Neumann series for highly oscillatory equations
    Iserles, A
    BIT NUMERICAL MATHEMATICS, 2004, 44 (03) : 473 - 488
  • [44] On the Method of Neumann Series for Highly Oscillatory Equations
    A. Iserles
    BIT Numerical Mathematics, 2004, 44 : 473 - 488
  • [45] DETERMINATION OF A JUMP BY FOURIER AND FOURIER-CHEBYSHEV SERIES
    Avdispahic, M.
    Sabanac, Z.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (07) : 2307 - 2321
  • [46] Comparison between Fourier and Corrected Fourier Series Methods
    Zainal, Nor Hafizah Binti
    Kilicman, Adem
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2013, 7 (02): : 273 - 282
  • [47] Winding numbers and fourier series
    Jean-Pierre Kahane
    Proceedings of the Steklov Institute of Mathematics, 2011, 273 : 191 - 195
  • [48] Some Fourier series with gaps
    Fernando Chamizo
    Adrián Ubis
    Journal d'Analyse Mathématique, 2007, 101 : 179 - 197
  • [49] On the matrix summation of fourier series
    Voloshyna T.V.
    Baysalov Zh.U.
    Journal of Automation and Information Sciences, 2020, 52 (11) : 60 - 71
  • [50] On Some Diophantine Fourier Series
    Hai Long LI Department of Mathematics
    Acta Mathematica Sinica(English Series), 2010, 26 (06) : 1125 - 1132