Discrete Fourier-Neumann series

被引:0
|
作者
Ciaurri, O [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Computac, Logrono 26004, Spain
关键词
bessel functions; Fourier series; Neumann series; mean convergence; discrete A(p) weights; discrete Hilbert transform;
D O I
10.1016/j.jat.2004.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J(mu) denote the Bessel function of order mu. The system j(n)(x) = {j(n)(x)(s)}(sgreater than or equal to1) = {2rootalpha+2n+1 J(alpha+2n+1)(p(s))/ap(s)\J(alpha+1)(ap(s))\}(sgreater than or equal to1) with n = 0, 1,..., alpha > - 1, and where p(s) denotes the sth positive zero of J(alpha) (ax), is orthonormal in l(2) (N). In this paper, we study the mean convergence of the Fourier series with respect to this system. Also, we describe the space in which the span of the system is dense. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 140
页数:15
相关论文
共 50 条