New classes of orthogonal polynomials

被引:2
|
作者
Srivastava, V [1 ]
Naidu, AR [1 ]
机构
[1] Univ Hyderabad, Ctr Cognit Sci, Sch Phys, Hyderabad 500046, Andhra Pradesh, India
关键词
orthogonal polynomials; Gram-Schmidt orthogonalization; Lowdin's symmetric orthogonalization; canonical orthogonalization;
D O I
10.1002/qua.20890
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We show that two new classes of orthogonal polynomials can be derived by applying two orthogonalization procedures due to Lowdin to a set of monomials. They are new in that they possess novel properties in terms of their inner products with the monomials. Each class comprises sets of orthogonal polynomials that satisfy orthogonality conditions with respect to a weight function on a certain interval. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:1258 / 1266
页数:9
相关论文
共 50 条
  • [41] THE ORTHOGONAL POLYNOMIALS AND THE PADE'APPROXIMATION
    Faiz Ahmad (Department of Mathemahcs
    Applied Mathematics and Mechanics(English Edition), 1998, (07) : 663 - 668
  • [42] Discrete Entropies of Orthogonal Polynomials
    Aptekarev, A. I.
    Dehesa, J. S.
    Martinez-Finkelshtein, A.
    Yanez, R.
    CONSTRUCTIVE APPROXIMATION, 2009, 30 (01) : 93 - 119
  • [43] Duality for classical orthogonal polynomials
    Askey, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 37 - 43
  • [44] Julia Sets of Orthogonal Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    Potential Analysis, 2019, 50 : 401 - 413
  • [45] Fourier series of orthogonal polynomials
    Greene, Nataniel
    RECENT ADVANCES ON APPLIED MATHEMATICS: PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08), 2008, : 247 - +
  • [46] Orthogonal polynomials on domains of revolution
    Xu, Yuan
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (02)
  • [47] Cubature formulae and orthogonal polynomials
    Cools, R
    Mysovskikh, IP
    Schmid, HJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) : 121 - 152
  • [48] Generalized Jacobi orthogonal polynomials
    Bouras, B.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (10) : 715 - 730
  • [49] AUTOMORPHISMS OF ALGEBRAS AND ORTHOGONAL POLYNOMIALS
    Gromada, Daniel
    Posta, Severin
    ACTA POLYTECHNICA, 2014, 54 (06) : 394 - 397
  • [50] Oscillatory behavior of orthogonal polynomials
    V. Totik
    Acta Mathematica Hungarica, 2020, 160 : 453 - 467