Inhomogeneous self-similar sets and box dimensions

被引:17
|
作者
Fraser, Jonathan M. [1 ]
机构
[1] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
基金
英国工程与自然科学研究理事会;
关键词
inhomogeneous self-similar set; box dimension; covering regularity exponent;
D O I
10.4064/sm213-2-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the box dimensions of inhomogeneous self-similar sets. Firstly, we extend some results of Olsen and Snigireva by computing the upper box dimensions assuming some mild separation conditions. Secondly, we investigate the more difficult problem of computing the lower box dimension. We give some non-trivial bounds and provide examples to show that lower box dimension behaves much more strangely than upper box dimension, Hausdorff dimension and packing dimension.
引用
收藏
页码:133 / 156
页数:24
相关论文
共 41 条
  • [21] Dimensions of popcorn-like pyramid sets
    Banaji, Amlan
    Chen, Haipeng
    JOURNAL OF FRACTAL GEOMETRY, 2023, 10 (1-2) : 151 - 168
  • [22] General fractal dimensions of typical sets and measures
    Achour, Rim
    Selmi, Bilel
    FUZZY SETS AND SYSTEMS, 2024, 490
  • [23] On the average box dimensions of graphs of typical continuous functions
    Adam-Day, B.
    Ashcroft, C.
    Olsen, L.
    Pinzani, N.
    Rizzoli, A.
    Rowe, J.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (02) : 263 - 302
  • [24] A note on fractals of one forbidden word and their box dimensions
    Huang, Chengxing
    Peng, Shou-Li
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2006, 14 (04) : 327 - 337
  • [25] On the average box dimensions of graphs of typical continuous functions
    B. Adam-Day
    C. Ashcroft
    L. Olsen
    N. Pinzani
    A. Rizzoli
    J. Rowe
    Acta Mathematica Hungarica, 2018, 156 : 263 - 302
  • [26] Box dimension of generic Hölder level sets
    Buczolich, Zoltan
    Maga, Balazs
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (03): : 531 - 554
  • [27] Inhomogeneous Self-Affine Carpets
    Fraser, Jonathan M.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (05) : 1547 - 1566
  • [28] A note on the dimensions of difference and distance sets for graphs of functions
    Verma, Manuj
    Priyadarshi, Amit
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [29] Assouad dimension influences the box and packing dimensions of orthogonal projections
    Falconer, Kenneth
    Fraser, Jonathan
    Shmerkin, Pablo
    JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (03) : 247 - 259
  • [30] Dimensions of the Julia sets of rational maps with the backward contraction property
    Li, Huaibin
    Shen, Weixiao
    FUNDAMENTA MATHEMATICAE, 2008, 198 (02) : 165 - 176