SOME INDEX FORMULAE ON THE MODULI SPACE OF STABLE PARABOLIC VECTOR BUNDLES

被引:4
|
作者
Albin, Pierre [1 ]
Rochon, Frederic [2 ]
机构
[1] Univ Illinois, Urbana, IL USA
[2] Australian Natl Univ, Dept Math, Canberra, ACT 0200, Australia
基金
加拿大自然科学与工程研究理事会;
关键词
parabolic bundles; cusps; index formula; SPECTRAL GEOMETRY; DETERMINANTS; OPERATORS; SURFACES; FAMILIES; LAPLACIAN; MANIFOLDS; THEOREM;
D O I
10.1017/S144678871200047X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study natural families of partial derivative-operators on the moduli space of stable parabolic vector bundles. Applying a families index theorem for hyperbolic cusp operators from our previous work, we find formulae for the Chern characters of the associated index bundles. The contributions from the cusps are explicitly expressed in terms of the Chern characters of natural vector bundles related to the parabolic structure. We show that our result implies formulae for the Chern classes of the associated determinant bundles consistent with a result of Takhtajan and Zograf.
引用
收藏
页码:1 / 37
页数:37
相关论文
共 49 条
  • [21] Chen–Ruan cohomology and moduli spaces of parabolic bundles over a Riemann surface
    Indranil Biswas
    Pradeep Das
    Anoop Singh
    Proceedings - Mathematical Sciences, 2022, 132
  • [22] The very good property for parabolic vector bundles over curves
    Alexander Soibelman
    Letters in Mathematical Physics, 2018, 108 : 1551 - 1561
  • [23] The very good property for parabolic vector bundles over curves
    Soibelman, Alexander
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (06) : 1551 - 1561
  • [24] Non-pluripolar products on vector bundles and Chern-Weil formulae
    Xia, Mingchen
    MATHEMATISCHE ANNALEN, 2024, 390 (03) : 3239 - 3316
  • [25] On some moduli spaces of bundles on K3 surfaces
    Madonna, CG
    MONATSHEFTE FUR MATHEMATIK, 2005, 146 (04): : 333 - 339
  • [26] Chen-Ruan cohomology and moduli spaces of parabolic bundles over a Riemann surface
    BISWAS, I. N. D. R. A. N. I. L.
    DAS, P. R. A. D. E. E. P.
    SINGH, A. N. O. O. P.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (01):
  • [27] Betti Numbers of parabolic U(2,1)-Higgs bundles moduli spaces
    Marina Logares
    Geometriae Dedicata, 2006, 123 : 187 - 200
  • [28] Betti Numbers of parabolic U(2,1)-Higgs bundles moduli spaces
    Logares, Marina
    GEOMETRIAE DEDICATA, 2006, 123 (01) : 187 - 200
  • [29] Stable Vector Bundles on Calabi-Yau Threefolds
    Andreas, Bjoern
    Hernandez Ruiperez, Daniel
    Sanchez Gomez, Dario
    SPECIAL METRICS AND SUPERSYMMETRY, 2009, 1093 : 19 - +
  • [30] DETERMINANT BUNDLE OVER THE UNIVERSAL MODULI SPACE OF PRINCIPAL BUNDLES OVER THE TEICHMULLER SPACE
    Saha, Arideep
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (01) : 129 - 149