(DN)-(Ω)-TYPE CONDITIONS FOR FRECHET OPERATOR SPACES

被引:0
作者
Piszczek, Krzysztof [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
operator space; Frechet space; (DN)-(Omega)-type conditions; quantization; SUBSPACES; ANALOGS;
D O I
10.2140/pjm.2013.261.237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce (DN)-(Omega)-type conditions for Frechet operator spaces. We investigate which quantizations carry over the above conditions from the underlying Frechet space onto the operator space structure. This holds in particular for the minimal and maximal quantizations in case of a Frechet space and-additionally-for the row, column and Pisier quantizations in case of a Frechet-Hilbert space. We also reformulate these conditions in the language of matrix polars.
引用
收藏
页码:237 / 256
页数:20
相关论文
共 50 条
[31]   Real analytic curves in Frechet spaces and their duals [J].
Bonet, J ;
Domanski, P .
MONATSHEFTE FUR MATHEMATIK, 1998, 126 (01) :13-36
[32]   Convergence of arithmetic means of operators in Frechet spaces [J].
Albanese, Angela A. ;
Bonet, Jose ;
Ricker, Werner J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) :160-173
[33]   Asymptotic behavior of Gaussian samples in Frechet spaces [J].
Zapala, AM .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2003, 21 (06) :1449-1475
[34]   A quantitative approach to weak compactness in Frechet spaces and spaces C(X) [J].
Angosto, C. ;
Kakol, J. ;
Lopez-Pellicer, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 403 (01) :13-22
[35]   Frechet and (LB) sequence spaces induced by dual Banach spaces of discrete Cesaro spaces [J].
Bonet, Jose ;
Ricker, Werner J. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2021, 28 (01) :1-19
[36]   Real operator spaces and operator algebras [J].
Blecher, David P. .
STUDIA MATHEMATICA, 2024, 275 (01) :1-40
[37]   HILFER AND HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS IN FRECHET SPACES [J].
Abbas, Said ;
Benchohra, Mouffak ;
Hamidi, Naima ;
Nieto, Juan J. .
TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 10 (01) :102-116
[38]   Measure of noncompactness and fractional integro-differential equations with state-dependent nonlocal conditions in Frechet spaces [J].
Benchohra, Mouffak ;
Bouteffal, Zohra ;
Henderson, Johnny ;
Litimein, Sara .
AIMS MATHEMATICS, 2020, 5 (01) :15-25
[39]   Quasi-reflexive Frechet spaces and mean ergodicity [J].
Piszczek, Krzysztof .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (01) :224-233
[40]   THE GROWTH BOUND FOR STRONGLY CONTINUOUS SEMIGROUPS ON FRECHET SPACES [J].
Wegner, Sven-Ake .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (03) :801-810