On the localization of the personalized PageRank of complex networks

被引:22
|
作者
Garcia, E. [1 ]
Pedroche, F. [2 ]
Romance, M. [1 ,3 ]
机构
[1] Univ Rey Juan Carlos, Dept Matemat Aplicada ESCET, Mostoles 28933, Madrid, Spain
[2] Univ Politecn Valencia, Inst Matemat Multidisciplinaria, Valencia 46022, Spain
[3] Univ Politecn Madrid, Ctr Tecnol Biomed, Pozuelo De Alarcon 28223, Madrid, Spain
关键词
Google matrix; PageRank; Link analysis; Social networking;
D O I
10.1016/j.laa.2012.10.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper new results on personalized PageRank are shown. We consider directed graphs that may contain dangling nodes. The main result presented gives an analytical characterization of all the possible values of the personalized PageRank for any node. We use this result to give a theoretical justification of a recent model that uses the personalized PageRank to classify users of Social Networks Sites. We introduce new concepts concerning competitivity and leadership in complex networks. We also present some theoretical techniques to locate leaders and competitors which are valid for any personalization vector and by using only information related to the adjacency matrix of the graph and the distribution of its dangling nodes. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:640 / 652
页数:13
相关论文
共 50 条
  • [21] Approximate Personalized PageRank on Dynamic Graphs
    Zhang, Hongyang
    Lofgren, Peter
    Goel, Ashish
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1315 - 1324
  • [22] Reducing seed noise in personalized PageRank
    Huang, Shengyu
    Li, Xinsheng
    Candan, K. Selcuk
    Sapino, Maria Luisa
    SOCIAL NETWORK ANALYSIS AND MINING, 2016, 6 (01) : 1 - 25
  • [23] Parallel Personalized PageRank on Dynamic Graphs
    Guo, Wentian
    Li, Yuchen
    Sha, Mo
    Tan, Kian-Lee
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2017, 11 (01): : 93 - 106
  • [24] When the Web meets the cell: using personalized PageRank for analyzing protein interaction networks
    Ivan, Gabor
    Grolmusz, Vince
    BIOINFORMATICS, 2011, 27 (03) : 405 - 407
  • [25] PageRank equation and localization in the WWW
    Perra, N.
    Zlatic, V.
    Chessa, A.
    Conti, C.
    Donato, D.
    Caldarelli, G.
    EPL, 2009, 88 (04)
  • [26] Personalized PageRank with Node-Dependent Restart
    Avrachenkov, Konstantin
    van der Hofstad, Remco
    Sokol, Marina
    ALGORITHMS AND MODELS FOR THE WEB GRAPH (WAW 2014), 2014, 8882 : 23 - 33
  • [27] Important nodes mining based on a novel personalized temporal motif pagerank algorithm in temporal networks
    Zhao, Xiuming
    Yu, Hongtao
    Zhang, Jianpeng
    Wu, Zheng
    Wu, Yiteng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2022, 33 (12):
  • [28] PageRank for bibliographic networks
    Dalibor Fiala
    François Rousselot
    Karel Ježek
    Scientometrics, 2008, 76 : 135 - 158
  • [29] HubPPR: Effective Indexing for Approximate Personalized PageRank
    Wang, Sibo
    Tang, Youze
    Xiao, Xiaokui
    Yang, Yin
    Li, Zengxiang
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2016, 10 (03): : 205 - 216
  • [30] Representation learning on textual network with personalized PageRank
    Li, Teng
    Dou, Yong
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (11)