High-capacity MnCo2O4 supported by reduced graphene oxide as an anode for lithium-ion capacitors

被引:21
|
作者
Fan, Le-Qing [1 ,2 ]
Huang, Jian-Ling [1 ,2 ]
Wang, Yong-Lan [1 ,2 ]
Geng, Cheng-Long [1 ,2 ]
Sun, Si-Jia [1 ,2 ]
Huang, Yun-Fang [2 ]
Wu, Ji-Huai [1 ,2 ]
机构
[1] Huaqiao Univ, Coll Mat Sci & Engn, Fujian Key Lab Photoelect Funct Mat, Xiamen 361021, Fujian, Peoples R China
[2] Minist Educ, Engn Res Ctr Environm Friendly Funct Mat, Xiamen 361021, Fujian, Peoples R China
来源
JOURNAL OF ENERGY STORAGE | 2020年 / 30卷
基金
中国国家自然科学基金;
关键词
MnCo2O4; Lithium-ion capacitors; Graphene; Discharge capacity; HIGH-PERFORMANCE ANODES; LONG-CYCLE-LIFE; HIGH-ENERGY; BATTERY ANODES; STORAGE; NANOPARTICLES; COMPOSITES; STEP; MICROSPHERES; FRAMEWORK;
D O I
10.1016/j.est.2020.101427
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In order to construct lithium-ion capacitors (LICs) possessing superior performance, a two-step solvothermal method was adopted to prepare high-capacity MnCo2O4 supported by reduced graphene oxide (rGO). MnCo2O4 particles were formed at the first step and then at the second step they were coated onto the surface of rGO sheets. The introduction of rGO boosted the electronic conductivity and the specific surface area. Such synthesized MnCo2O4/rGO composite was employed as an anode of lithium-ion batteries. An ultrahigh initial discharge capacity (1657 mAh g(-1), 0.1 A g(-1)) was achieved. And after this anode was repetitively charged/discharged at 0.2 A g(-1) for 100 cycles, a high reversible capacity (791 mAh g(-1)) was also presented. A LIC was constructed by using this superior-performance MnCo2O4/rGO composite acting as an anode coupled with an activated carbon (AC) cathode. The maximum specific energy and specific power of the MnCo2O4/rGO//AC LIC reached 78.8 Wh kg(-1) and 3.0 kWh kg(-1), respectively. Moreover, for this LIC, at the end of the 1000th cycle, the capacity retention ratio was 76.9%.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Carbon-coated Si micrometer particles binding to reduced graphene oxide for a stable high-capacity lithium-ion battery anode
    Han, Xiang
    Chen, Huixin
    Zhang, Ziqi
    Huang, Donglin
    Xu, Jianfang
    Li, Cheng
    Chen, Songyan
    Yang, Yong
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (45) : 17757 - 17763
  • [32] Reduced graphene oxide encapsulated MnO microspheres as an anode for high-rate lithium ion capacitors
    Jia, Yao
    Yang, Zhe-wei
    Li, Hui-jun
    Wang, Yong-zhen
    Wang, Xiao-min
    NEW CARBON MATERIALS, 2021, 36 (03) : 573 - 581
  • [33] MnCO3/Mn3O4/reduced graphene oxide ternary anode materials for lithium-ion batteries: facile green synthesis and enhanced electrochemical performance
    Zhang, Rui
    Wang, Dong
    Qin, Lu-Chang
    Wen, Guangwu
    Pan, Hong
    Zhang, Yingfei
    Tian, Nan
    Zhou, Yu
    Huang, Xiaoxiao
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (32) : 17001 - 17011
  • [34] Flexible g-C3N4 Enhancing Superior Cycling Stability of ZnFe2O4-Fe2O3 Nanosheet Composites as High-Capacity Anode Materials for Lithium-Ion Batteries
    Huang, Jian
    Hu, Lin
    Xu, Hui
    Yang, Zhong
    Li, Jianping
    Wang, Ping
    CHEMELECTROCHEM, 2023, 10 (18)
  • [35] Graphene as a high-capacity anode material for lithium ion batteries
    Hongdong Liu
    Jiamu Huang
    Xinlu Li
    Jia Liu
    Yuxin Zhang
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28 : 220 - 223
  • [36] Graphene-oxide-wrapped ZnMn2O4 as a high performance lithium-ion battery anode
    Sun, Qian
    Bijelic, Mirjana
    Djurisic, Aleksandra B.
    Suchomski, Christian
    Liu, Xiang
    Xie, Maohai
    Ng, Alan M. C.
    Li, Hang Kong
    Shih, Kaimin
    Burazer, Sanja
    Skoko, Zeljko
    Djerdj, Igor
    Popovic, Jasminka
    NANOTECHNOLOGY, 2017, 28 (45)
  • [37] Boosting the high-rate performance of lithium-ion battery anodes using MnCo2O4/Co3O4 nanocomposite interfaces
    Tomar, Anubha
    Vankani, Chirag
    Singh, Satendra Pal
    Winter, Martin
    Rai, Alok Kumar
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (04) : 3516 - 3524
  • [38] Graphene as a High-capacity Anode Material for Lithium Ion Batteries
    柳红东
    黄佳木
    LI Xinlu
    LIU Jia
    ZHANG Yuxin
    Journal of Wuhan University of Technology(Materials Science), 2013, (02) : 220 - 223
  • [39] Hydrothermal synthesis of porous hydrangea-like MnCo2O4 as anode materials for high performance lithium ion batteries
    Xu, Hongmei
    Shen, Haijing
    Song, Xiaolan
    Kong, Xiaodong
    Zhang, Ying
    Qin, Zhenzhen
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 851
  • [40] Mesoporous MnCo2O4 with a Flake-Like Structure as Advanced Electrode Materials for Lithium-Ion Batteries and Supercapacitors
    Mondal, Anjon Kumar
    Su, Dawei
    Chen, Shuangqiang
    Ung, Alison
    Kim, Hyun-Soo
    Wang, Guoxiu
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (04) : 1526 - 1532