Finding hitting times in various graphs

被引:2
|
作者
Rao, Shravas K. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
Random walks; Hitting time; RANDOM-WALKS;
D O I
10.1016/j.spl.2013.05.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The hitting time, h(uv), of a random walk on a finite graph G, is the expected time for the walk to reach vertex v given that it started at vertex u. We present two methods of calculating the hitting time between vertices of finite graphs, along with applications to specific classes of graphs, including grids, trees, and the 'tadpole' graphs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2067 / 2072
页数:6
相关论文
共 50 条
  • [41] HITTING TIMES FOR SHAMIR'S PROBLEM
    Kahn, Jeff
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (01) : 627 - 668
  • [42] Finiteness of hitting times under taboo
    Bulinskaya, Ekaterina Vladimirovna
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 15 - 19
  • [43] Unimodality of Hitting Times for Stable Processes
    Letemplier, Julien
    Simon, Thomas
    SEMINAIRE DE PROBABILITES XLVI, 2014, 2123 : 345 - 357
  • [44] HITTING TIMES FOR RANDOM WALKS WITH RESTARTS
    Janson, Svante
    Peres, Yuval
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (02) : 537 - 547
  • [45] Hitting times with taboo for a random walk
    E. Vl. Bulinskaya
    Siberian Advances in Mathematics, 2012, 22 (4) : 227 - 242
  • [46] On the average hitting times of the squares of cycles
    Doi, Yoshiaki
    Konno, Norio
    Nakamigawa, Tomoki
    Sakuma, Tadashi
    Segawa, Etsuo
    Shinohara, Hidehiro
    Tamura, Shunya
    Tanaka, Yuuho
    Toyota, Kosuke
    DISCRETE APPLIED MATHEMATICS, 2022, 313 : 18 - 28
  • [47] The hitting and cover times of Metropolis walks
    Nonaka, Yoshiaki
    Ono, Hirotaka
    Sadakane, Kunihiko
    Yamashita, Masafumi
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (16-18) : 1889 - 1894
  • [48] RECURRENCE RELATIONS FOR GENERALIZED HITTING TIMES FOR SEMI-MARKOV PROCESSES
    Silvestrov, Dmitrii S.
    ANNALS OF APPLIED PROBABILITY, 1996, 6 (02) : 617 - 649
  • [49] Mean hitting times of quantum Markov chains in terms of generalized inverses
    Lardizabal, Carlos F.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (08)
  • [50] The hitting time of random walk on unicyclic graphs
    Zhu, Xiaomin
    Zhang, Xiao-Dong
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (04) : 573 - 592