Finding hitting times in various graphs

被引:2
|
作者
Rao, Shravas K. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
Random walks; Hitting time; RANDOM-WALKS;
D O I
10.1016/j.spl.2013.05.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The hitting time, h(uv), of a random walk on a finite graph G, is the expected time for the walk to reach vertex v given that it started at vertex u. We present two methods of calculating the hitting time between vertices of finite graphs, along with applications to specific classes of graphs, including grids, trees, and the 'tadpole' graphs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2067 / 2072
页数:6
相关论文
共 50 条
  • [1] Cover and hitting times of hyperbolic random graphs
    Kiwi, Marcos
    Schepers, Markus
    Sylvester, John
    RANDOM STRUCTURES & ALGORITHMS, 2024, 65 (04) : 915 - 978
  • [2] Hitting times for random walks on tricyclic graphs
    Zhu, Xiao-Min
    Yang, Xu
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 65 - 72
  • [3] The expected hitting times for graphs with cutpoints
    Chen, HY
    Zhang, FJ
    STATISTICS & PROBABILITY LETTERS, 2004, 66 (01) : 9 - 17
  • [4] Hitting Times for Random Walks on Sierpiski Graphs and Hierarchical Graphs
    Qi, Yi
    Dong, Yuze
    Zhang, Zhongzhi
    Zhang, Zhang
    COMPUTER JOURNAL, 2020, 63 (09) : 1385 - 1396
  • [5] Chung-Yau Invariants and Graphs with Symmetric Hitting Times
    Chang, Xiao
    Xu, Hao
    JOURNAL OF GRAPH THEORY, 2017, 85 (03) : 691 - 705
  • [6] The Hitting Times of Random Walks on Bicyclic Graphs
    Xiaomin Zhu
    Xiao-Dong Zhang
    Graphs and Combinatorics, 2021, 37 : 2365 - 2386
  • [7] The Hitting Times of Random Walks on Bicyclic Graphs
    Zhu, Xiaomin
    Zhang, Xiao-Dong
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2365 - 2386
  • [8] An Explicit Formula of Hitting Times for Random Walks on Graphs
    Xu, Hao
    Yau, Shing-Tung
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2014, 10 (03) : 567 - 581
  • [9] Hitting times for random walks on subdivision and triangulation graphs
    Chen, Haiyan
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (01) : 117 - 130
  • [10] Hitting times, commute times, and cover times for random walks on random hypergraphs
    Helali, Amine
    Loewe, Matthias
    STATISTICS & PROBABILITY LETTERS, 2019, 154