Functionalization of Metal-Organic Frameworks for Enhanced Stability under Humid Carbon Dioxide Capture Conditions

被引:39
作者
Andirova, Dinara [1 ]
Lei, Yu [1 ]
Zhao, Xiaodan [1 ]
Choi, Sunho [1 ]
机构
[1] Northeastern Univ, Dept Chem Engn, Snell Engn Ctr 313, Boston, MA 02115 USA
关键词
adsorption; amines; carboxylate ligands; magnesium; metal-organic frameworks; CO2; CAPTURE; MESOPOROUS SILICA; ADSORPTION; ADSORBENTS; STORAGE; SEPARATION; SORBENTS; MCM-36;
D O I
10.1002/cssc.201500580
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic frameworks (MOFs) have been highlighted recently as promising materials for CO2 capture. However, in practical CO2 capture processes, such as capture from flue gas or ambient air, the adsorption properties of MOFs tend to be harmed by the presence of moisture possibly because of the hydrophilic nature of the coordinatively unsaturated sites (CUSs) within their framework. In this work, the CUSs of the MOF framework are functionalized with amine-containing molecules to prevent structural degradation in a humid environment. Specifically, the framework of the magnesium dioxybenzenedicarboxylate (Mg/DOBDC) MOF was functionalized with ethylenediamine (ED) molecules to make the overall structure less hydrophilic. Structural analysis after exposure to high-temperature steam showed that the ED-functionalized Mg/DOBDC (ED-Mg/DOBDC) is more stable under humid conditions, than Mg/DOBDC, which underwent drastic structural changes. ED-Mg/DOBDC recovered its CO2 adsorption capacity and initial adsorption rate quite well as opposed to the original Mg/DOBDC, which revealed a significant reduction in its capture capacity and kinetics. These results suggest that the amine-functionalization of the CUSs is an effective way to enhance the structural stability of MOFs as well as their capture of humid CO2.
引用
收藏
页码:3405 / 3409
页数:5
相关论文
共 36 条
[1]  
[Anonymous], 2013, CLIMATE CHANGE 2013
[2]   CO2 adsorption in amine-grafted zeolite 13X [J].
Bezerra, Diogo P. ;
da Silva, Francisco W. M. ;
de Moura, Pedro A. S. ;
Sousa, Allyson. G. S. ;
Vieira, Rodrigo S. ;
Rodriguez-Castellon, Enrique ;
Azevedo, Diana C. S. .
APPLIED SURFACE SCIENCE, 2014, 314 :314-321
[3]   Oxidative Degradation of Aminosilica Adsorbents Relevant to Postcombustion CO2 Capture [J].
Bollini, Praveen ;
Choi, Sunho ;
Drese, Jeffrey H. ;
Jones, Christopher W. .
ENERGY & FUELS, 2011, 25 (05) :2416-2425
[4]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[5]   Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites [J].
Britt, David ;
Furukawa, Hiroyasu ;
Wang, Bo ;
Glover, T. Grant ;
Yaghi, Omar M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (49) :20637-20640
[6]   Water Stability and Adsorption in Metal-Organic Frameworks [J].
Burtch, Nicholas C. ;
Jasuja, Himanshu ;
Walton, Krista S. .
CHEMICAL REVIEWS, 2014, 114 (20) :10575-10612
[7]   Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores [J].
Caskey, Stephen R. ;
Wong-Foy, Antek G. ;
Matzger, Adam J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (33) :10870-+
[8]   Mesoporous Alumina-Supported Amines as Potential Steam-Stable Adsorbents for Capturing CO2 from Simulated Flue Gas and Ambient Air [J].
Chaikittisilp, Watcharop ;
Kim, Hyung-Ju ;
Jones, Christopher W. .
ENERGY & FUELS, 2011, 25 (11) :5528-5537
[9]   Modification of the Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultradilute Gases [J].
Choi, Sunho ;
Watanabe, Taku ;
Bae, Tae-Hyun ;
Sholl, David S. ;
Jones, Christopher W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (09) :1136-1141
[10]   Application of Amine-Tethered Solid Sorbents for Direct CO2 Capture from the Ambient Air [J].
Choi, Sunho ;
Drese, Jeffrey H. ;
Eisenberger, Peter M. ;
Jones, Christopher W. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (06) :2420-2427