Linearization through symmetries for discrete equations

被引:4
|
作者
Levi, D. [1 ]
Scimiterna, C.
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
关键词
LIE SYMMETRIES;
D O I
10.1088/1751-8113/46/32/325204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that one can devise through the symmetry approach a procedure to check the linearizability of a difference equation via a point or a discrete Cole-Hopf transformation. If the equation is linearizable, then the symmetry provides the linearizing transformation. At the end, we present a few examples of applications for equations defined on four lattice points.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] λ-symmetries for discrete equations
    Levi, D.
    Rodriguez, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (29)
  • [2] Potential symmetries and linearization of some evolution equations
    Gandarias, ML
    SPT 2004: SYMMETRY AND PERTURBATION THEORY, 2005, : 106 - 114
  • [3] SYMMETRIES OF NONLINEAR DIFFERENTIAL-EQUATIONS AND LINEARIZATION
    SARLET, W
    MAHOMED, FM
    LEACH, PGL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (02): : 277 - 292
  • [4] Discrete symmetries of differential equations
    J Phys A Math Gen, 4 (859):
  • [5] Discrete symmetries of differential equations
    Gaeta, G
    Rodriquez, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (04): : 859 - 880
  • [6] CONTINUOUS SYMMETRIES OF DISCRETE EQUATIONS
    LEVI, D
    WINTERNITZ, P
    PHYSICS LETTERS A, 1991, 152 (07) : 335 - 338
  • [7] FACTORIZABLE LIE SYMMETRIES AND THE LINEARIZATION OF DIFFERENCE-EQUATIONS
    BYRNES, GB
    SAHADEVAN, R
    QUISPEL, GRW
    NONLINEARITY, 1995, 8 (03) : 443 - 459
  • [8] GAUGE AND DUAL SYMMETRIES AND LINEARIZATION OF HIROTA BILINEAR EQUATIONS
    SAITO, S
    SAITOH, N
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (05) : 1052 - 1055
  • [9] Discrete Lie symmetries for difference equations
    Levi, D
    Rodríguez, MA
    GROUP THEORY AND NUMERICAL ANALYSIS, 2005, 39 : 179 - 189
  • [10] λ-Symmetries for the Reduction of Continuous and Discrete Equations
    Levi, D.
    Nucci, M. C.
    Rodriguez, M. A.
    ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) : 311 - 321