The past, present, and future physiology and pharmacology of glucagon

被引:52
作者
Capozzi, Megan E. [1 ]
D'Alessio, David A. [1 ,2 ]
Campbell, Jonathan E. [1 ,2 ,3 ]
机构
[1] Duke Univ, Duke Mol Physiol Inst, Med Ctr, Durham, NC 27701 USA
[2] Duke Univ, Dept Med, Endocrinol Div, Med Ctr, Durham, NC 27701 USA
[3] Duke Univ, Dept Pharmacol & Canc Biol, Med Ctr, Durham, NC 27701 USA
关键词
ALPHA-CELL HYPERPLASIA; DEPENDENT INSULINOTROPIC POLYPEPTIDE; HEPATIC GLUCOSE-PRODUCTION; AMINO-ACID-METABOLISM; PANCREATIC BETA-CELLS; GLP-1; RECEPTOR; SOMATOSTATIN RECEPTOR; GLYCEMIC CONTROL; FATTY-ACIDS; HORMONE-SECRETION;
D O I
10.1016/j.cmet.2022.10.001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The evolution of glucagon has seen the transition from an impurity in the preparation of insulin to the devel-opment of glucagon receptor agonists for use in type 1 diabetes. In type 2 diabetes, glucagon receptor an-tagonists have been explored to reduce glycemia thought to be induced by hyperglucagonemia. However, the catabolic actions of glucagon are currently being leveraged to target the rise in obesity that paralleled that of diabetes, bringing the pharmacology of glucagon full circle. During this evolution, the physiological importance of glucagon advanced beyond the control of hepatic glucose production, incorporating critical roles for glucagon to regulate both lipid and amino acid metabolism. Thus, it is unsurprising that the study of glucagon has left several paradoxes that make it difficult to distill this hormone down to a simplified action. Here, we describe the history of glucagon from the past to the present and suggest some direction to the future of this field.
引用
收藏
页码:1654 / 1674
页数:21
相关论文
共 233 条
  • [31] THE AMINO ACID SEQUENCE OF GLUCAGON
    BROMER, WW
    SINN, LG
    STAUB, A
    BEHRENS, OK
    [J]. DIABETES, 1957, 6 (03) : 234 - 238
  • [32] Structure-function of the glucagon receptor family of G protein-coupled receptors: The glucagon, GIP, GLP-1, and GLP-2 receptors
    Brubaker, PL
    Drucker, DJ
    [J]. RECEPTORS & CHANNELS, 2002, 8 (3-4) : 179 - 188
  • [33] BURGER M., 1929, ZEITSCHR GES EXP MED, V67, P441, DOI 10.1007/BF02610898
  • [34] BURGER M., 1929, ZEITSCHR GES EXP MED, V65, P487, DOI 10.1007/BF02610017
  • [35] Burger M., 1935, Zeitschrift fur die gesamte experimentelle Medizin, V96, P375, DOI 10.1007/BF02595511
  • [36] Mechanisms controlling pancreatic islet cell function in insulin secretion
    Campbell, Jonathan E.
    Newgard, Christopher B.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2021, 22 (02) : 142 - 158
  • [37] Islet α cells and glucagon-critical regulators of energy homeostasis (vol 11, pg 329, 2015)
    Campbell, Jonathan E.
    Drucker, Daniel J.
    [J]. NATURE REVIEWS ENDOCRINOLOGY, 2015, 11 (06) : 329 - 338
  • [38] Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action
    Campbell, Jonathan E.
    Drucker, Daniel J.
    [J]. CELL METABOLISM, 2013, 17 (06) : 819 - 837
  • [39] The Limited Role of Glucagon for Ketogenesis During Fasting or in Response to SGLT2 Inhibition
    Capozzi, Megan E.
    Coch, Reilly W.
    Koech, Jepchumba
    Astapova, Inna I.
    Wait, Jacob B.
    Encisco, Sara E.
    Douros, Jonathan D.
    El, Kimberly
    Finan, Brian
    Sloop, Kyle W.
    Herman, Mark A.
    D'Alessio, David A.
    Campbell, Jonathan E.
    [J]. DIABETES, 2020, 69 (05) : 882 - 892
  • [40] Glucagon lowers glycemia when β cells are active
    Capozzi, Megan E.
    Wait, Jacob B.
    Koech, Jepchumba
    Gordon, Andrew N.
    Coch, Reilly W.
    Svendsen, Berk
    Finan, Brian
    DAlessio, David A.
    Campbell, Jonathan E.
    [J]. JCI INSIGHT, 2019, 4 (16)