Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix

被引:201
作者
Reshetnyak, YK
Andreev, OA
Lehnert, U
Engelman, DM
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Univ Rhode Isl, Dept Phys, Kingston, RI 02881 USA
关键词
drug delivery; peptide nucleic acid delivery; tumors; membrane transport; helix formation;
D O I
10.1073/pnas.0601463103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have previously observed the spontaneous, pH-dependent insertion of a water-soluble peptide to form a helix across lipid bilayers [Hunt, J. F., Rath, P., Rothschild, K. J. & Engelman, D. M. (1997) Biochemistry 36, 15177-15192]. We now use a related peptide, pH (low) insertion peptide, to translocate cargo molecules attached to its C terminus across the plasma membranes of living cells. Translocation is selective for low pH, and various types of cargo molecules attached by disulfides can be released by reduction in the cytoplasm, including peptide nucleic acids, a cyclic peptide (phalloidin), and organic compounds. Because a high extracellular acidity is characteristic of a variety of pathological conditions (such as tumors, infarcts, stroke-afflicted tissue, atherosclerotic lesions, sites of inflammation or infection, or damaged tissue resulting from trauma) or might be created artificially, pH (low) insertion peptide may prove a useful tool for selective delivery of agents for drug therapy, diagnostic imaging, genetic control, or cell regulation.
引用
收藏
页码:6460 / 6465
页数:6
相关论文
共 30 条
[1]   Liposomal delivery of antisense oligonucleotides for efficient downregulation of Bcl-2 and induction of apoptosis [J].
Buck, AC ;
Shen, CX ;
Schirrmeister, H ;
Schmid-Kotsas, A ;
Munzert, G ;
Guhlmann, A ;
Mehrke, G ;
Klug, N ;
Gross, HJ ;
Bachem, M ;
Reske, SN .
CANCER BIOTHERAPY AND RADIOPHARMACEUTICALS, 2002, 17 (03) :281-289
[2]   A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression [J].
Conour, JE ;
Graham, WV ;
Gaskins, HR .
PHYSIOLOGICAL GENOMICS, 2004, 18 (02) :196-205
[3]   YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins [J].
Dalbey, RE ;
Kuhn, A .
JOURNAL OF CELL BIOLOGY, 2004, 166 (06) :769-774
[4]   Membrane protein folding: beyond the two stage model [J].
Engelman, DM ;
Chen, Y ;
Chin, CN ;
Curran, AR ;
Dixon, AM ;
Dupuy, AD ;
Lee, AS ;
Lehnert, U ;
Matthews, EE ;
Reshetnyak, YK ;
Senes, A ;
Popot, JL .
FEBS LETTERS, 2003, 555 (01) :122-125
[5]  
ENGELMAN DM, 1998, Patent No. 5739273
[6]   Recognition of transmembrane helices by the endoplasmic reticulum translocon [J].
Hessa, T ;
Kim, H ;
Bihlmaier, K ;
Lundin, C ;
Boekel, J ;
Andersson, H ;
Nilsson, I ;
White, SH ;
von Heijne, G .
NATURE, 2005, 433 (7024) :377-381
[7]   Spontaneous, pH-dependent membrane insertion of a transbilayer alpha-helix [J].
Hunt, JF ;
Rath, P ;
Rothschild, KJ ;
Engelman, DM .
BIOCHEMISTRY, 1997, 36 (49) :15177-15192
[8]   Recognition of chromosomal DNA by PNAs [J].
Kaihatsu, K ;
Janowski, BA ;
Corey, DR .
CHEMISTRY & BIOLOGY, 2004, 11 (06) :749-758
[9]   Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes [J].
Krogh, A ;
Larsson, B ;
von Heijne, G ;
Sonnhammer, ELL .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 305 (03) :567-580
[10]   Determining the membrane topology of proteins: Insertion pathway of a transmembrane helix of annexin 12 [J].
Ladokhin, AS ;
Isas, JM ;
Haigler, HT ;
White, SH .
BIOCHEMISTRY, 2002, 41 (46) :13617-13626