Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins

被引:73
|
作者
Zhu, Yalan [1 ,2 ]
Gao, Ang [3 ]
Zhan, Qi [1 ,2 ]
Wang, Yong [1 ]
Feng, Han [1 ]
Liu, Songqing [1 ]
Gao, Guangxia [4 ]
Serganov, Alexander [3 ]
Gao, Pu [1 ]
机构
[1] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, CAS Key Lab Infect & Immun,CAS Ctr Excellence Bio, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] NYU, Sch Med, Dept Biochem & Mol Pharmacol, New York, NY 10016 USA
[4] Chinese Acad Sci, Inst Biophys, CAS Ctr Excellence Biomacromol, CAS Key Lab Infect & Immun, Beijing 100101, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
VIRAL SUPPRESSORS; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; RNA; CAS; COMPLEX; RECOGNITION;
D O I
10.1016/j.molcel.2019.01.038
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Anti-CRISPR proteins (Acrs) targeting CRISPR-Cas9 systems represent natural "off switches" for Cas9-based applications. Recently, AcrIIC1, AcrIIC2, and AcrIIC3 proteins were found to inhibit Neisseria meningitidis Cas9 (NmeCas9) activity in bacterial and human cells. Here we report biochemical and structural data that suggest molecular mechanisms of AcrIIC2-and AcrIIC3-mediated Cas9 inhibition. AcrIIC2 dimer interacts with the bridge helix of Cas9, interferes with RNA binding, and prevents DNA loading into Cas9. AcrIIC3 blocks the DNA loading step through binding to a non-conserved surface of the HNH domain of Cas9. AcrIIC3 also forms additional interactions with the REC lobe of Cas9 and induces the dimerization of the AcrIIC3-Cas9 complex. While AcrIIC2 targets Cas9 orthologs from different sub-types, albeit with different efficiency, AcrIIC3 specifically inhibits NmeCas9. Structure-guided changes in NmeCas9 orthologs convert them into antiCRISPR-sensitive proteins. Our studies provide insights into anti-CRISPR-mediated suppression mechanisms and guidelines for designing regulatory tools in Cas9-based applications.
引用
收藏
页码:296 / +
页数:21
相关论文
共 50 条
  • [41] Mechanistic insights into the inhibition of the CRISPR-Cas surveillance complex by anti-CRISPR protein AcrIF13
    Wang, Hao
    Gao, Teng
    Zhou, Yu
    Ren, Junhui
    Guo, Junhua
    Zeng, Jianwei
    Xiao, Yu
    Zhang, Yi
    Feng, Yue
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2022, 298 (03)
  • [42] Structural basis for mismatch surveillance by CRISPR-Cas9
    Bravo, Jack P. K.
    Liu, Mu-Sen
    Hibshman, Grace N.
    Dangerfield, Tyler L.
    Jung, Kyungseok
    McCool, Ryan S.
    Johnson, Kenneth A.
    Taylor, David W.
    NATURE, 2022, 603 (7900) : 343 - 347
  • [43] Overview development and applications of CRISPR-Cas systems after a decade of research with a glance at anti-CRISPR proteins
    Lohrasbi, Vahid
    Shirmohammadlou, Neda
    Jahanshahi, Aidin
    Razavi, Shabnam
    REVIEWS IN MEDICAL MICROBIOLOGY, 2019, 30 (01) : 47 - 55
  • [44] Structure and Dynamics of the CRISPR-Cas9 Catalytic Complex
    Palermo, Giulia
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (05) : 2394 - 2406
  • [45] Type II-C CRISPR-Cas9 Biology, Mechanism, and Application
    Mir, Aamir
    Edraki, Alireza
    Lee, Jooyoung
    Sontheimer, Erik J.
    ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 357 - 365
  • [46] Allosteric inhibition of CRISPR-Cas9 by bacteriophage-derived peptides
    Cui, Yan-ru
    Wang, Shao-jie
    Chen, Jun
    Li, Jie
    Chen, Wenzhang
    Wang, Shuyue
    Meng, Bing
    Zhu, Wei
    Zhang, Zhuhong
    Yang, Bei
    Jiang, Biao
    Yang, Guang
    Ma, Peixiang
    Liu, Jia
    GENOME BIOLOGY, 2020, 21 (01)
  • [47] Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9
    Hirano, Seiichi
    Nishimasu, Hiroshi
    Ishitani, Ryuichiro
    Nureki, Osamu
    MOLECULAR CELL, 2016, 61 (06) : 886 - 894
  • [48] Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch
    Oakes, Benjamin L.
    Nadler, Dana C.
    Flamholz, Avi
    Fellmann, Christof
    Staahl, Brett T.
    Doudna, Jennifer A.
    Savage, David F.
    NATURE BIOTECHNOLOGY, 2016, 34 (06) : 646 - 651
  • [49] Delivery of CRISPR-Cas9 system for screening and editing RNA binding proteins in cancer
    Yan, Jingyue
    Kang, Diana D.
    Turnbull, Gillian
    Dong, Yizhou
    ADVANCED DRUG DELIVERY REVIEWS, 2022, 180
  • [50] Chemistry Nobel Honors CRISPR-Cas9
    You Li-Lan
    Sun Wei
    Yang Xiao-Qi
    Wang Yan-Li
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2020, 47 (11) : 1119 - 1126