Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins

被引:73
|
作者
Zhu, Yalan [1 ,2 ]
Gao, Ang [3 ]
Zhan, Qi [1 ,2 ]
Wang, Yong [1 ]
Feng, Han [1 ]
Liu, Songqing [1 ]
Gao, Guangxia [4 ]
Serganov, Alexander [3 ]
Gao, Pu [1 ]
机构
[1] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, CAS Key Lab Infect & Immun,CAS Ctr Excellence Bio, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] NYU, Sch Med, Dept Biochem & Mol Pharmacol, New York, NY 10016 USA
[4] Chinese Acad Sci, Inst Biophys, CAS Ctr Excellence Biomacromol, CAS Key Lab Infect & Immun, Beijing 100101, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
VIRAL SUPPRESSORS; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; RNA; CAS; COMPLEX; RECOGNITION;
D O I
10.1016/j.molcel.2019.01.038
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Anti-CRISPR proteins (Acrs) targeting CRISPR-Cas9 systems represent natural "off switches" for Cas9-based applications. Recently, AcrIIC1, AcrIIC2, and AcrIIC3 proteins were found to inhibit Neisseria meningitidis Cas9 (NmeCas9) activity in bacterial and human cells. Here we report biochemical and structural data that suggest molecular mechanisms of AcrIIC2-and AcrIIC3-mediated Cas9 inhibition. AcrIIC2 dimer interacts with the bridge helix of Cas9, interferes with RNA binding, and prevents DNA loading into Cas9. AcrIIC3 blocks the DNA loading step through binding to a non-conserved surface of the HNH domain of Cas9. AcrIIC3 also forms additional interactions with the REC lobe of Cas9 and induces the dimerization of the AcrIIC3-Cas9 complex. While AcrIIC2 targets Cas9 orthologs from different sub-types, albeit with different efficiency, AcrIIC3 specifically inhibits NmeCas9. Structure-guided changes in NmeCas9 orthologs convert them into antiCRISPR-sensitive proteins. Our studies provide insights into anti-CRISPR-mediated suppression mechanisms and guidelines for designing regulatory tools in Cas9-based applications.
引用
收藏
页码:296 / +
页数:21
相关论文
共 50 条
  • [31] Diversity of molecular mechanisms used by anti-CRISPR proteins: the tip of an iceberg?
    Hardouin, Pierre
    Goulet, Adeline
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (02) : 507 - 516
  • [32] Dynamics and mechanisms of CRISPR-Cas9 through the lens of computational methods
    Saha, Aakash
    Arantes, Pablo R.
    Palermo, Giulia
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2022, 75
  • [33] Secondary Conformational Checkpoint in CRISPR-Cas9
    Zhao, Shuxin
    Liu, Jin
    Zuo, Zhicheng
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (09) : 3440 - 3448
  • [34] CRISPR-Cas9 bends and twists DNA to read its sequence
    Cofsky, Joshua C.
    Soczek, Katarzyna M.
    Knott, Gavin J.
    Nogales, Eva
    Doudna, Jennifer A.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2022, 29 (04) : 395 - +
  • [35] A Type I-F Anti-CRISPR Protein Inhibits the CRISPR-Cas Surveillance Complex by ADP-Ribosylation
    Niu, Yiying
    Yang, Lingguang
    Gao, Teng
    Dong, Changpeng
    Zhang, Buyu
    Yin, Peipei
    Hopp, Ann-Katrin
    Li, Dongdong
    Gan, Rui
    Wang, Hongou
    Liu, Xi
    Cao, Xueli
    Xie, Yongchao
    Meng, Xianbin
    Deng, Haiteng
    Zhang, Xiaohui
    Ren, Jie
    Hottiger, Michael O.
    Chen, Zeliang
    Zhang, Yi
    Liu, Xiaoyun
    Feng, Yue
    MOLECULAR CELL, 2020, 80 (03) : 512 - +
  • [36] Protein Inhibitors of CRISPR-Cas9
    Bondy-Denomy, Joseph
    ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 417 - 423
  • [37] Harnessing CRISPR-Cas9 as an anti-mycobacterial system
    Sodani, Megha
    Misra, Chitra S.
    Rath, Devashish
    Kulkarni, Savita
    MICROBIOLOGICAL RESEARCH, 2023, 270
  • [38] Phages Fight Back: Inactivation of the CRISPR-Cas Bacterial Immune System by Anti-CRISPR Proteins
    Maxwell, Karen L.
    PLOS PATHOGENS, 2016, 12 (01)
  • [39] Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins
    Jia, Ning
    Patel, Dinshaw J.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2021, 22 (08) : 563 - 579
  • [40] Conformational control of DNA target cleavage by CRISPR-Cas9
    Sternberg, Samuel H.
    LaFrance, Benjamin
    Kaplan, Matias
    Doucina, Jennifer A.
    NATURE, 2015, 527 (7576) : 110 - 113