Autonomous Driving for Natural Paths Using an Improved Deep Reinforcement Learning Algorithm

被引:7
|
作者
Tseng, Kuo-Kun [1 ]
Yang, Hong
Wang, Haoyang
Yung, Kai Leung [2 ]
Lin, Regina Fang-Ying [3 ]
机构
[1] Harbin Inst Technol, Shenzhen 518055, Peoples R China
[2] Hong Kong Polytech Univ, Hong Kong, Peoples R China
[3] Shenzhen Technol Univ, Shenzhen 518118, Peoples R China
关键词
Reinforcement learning; Autonomous vehicles; Space vehicles; Roads; Neural networks; Brakes; Training;
D O I
10.1109/TAES.2022.3216579
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The purpose of this article is aimed to solve the problem associated with autonomous driving on the natural paths of planets. The contribution of this work is to propose an improved deep deterministic policy gradient (DDPG) framework for the autonomous driving on natural roads requires handling uneven surface of different throttle and braking reaction speeds. Our new finding is to design an adapted DDPG algorithm by double critic and excellent experience replay as DCEER-DDPG to reduce the overestimation of state action values. In addition, we created a virtual reality environment with TORCS simulator for fair evaluation. In the experiments, the proposed DCEER-DDPG has a better performance than previous algorithms, which can improve the utilization of driving experience on a natural path and increase the learning efficiency of the strategy. For the future applications, the proposed DCEER-DDPG is used not only on Earth, but also in lunar exploration.
引用
收藏
页码:5118 / 5128
页数:11
相关论文
共 50 条
  • [41] Deep Reinforcement Learning Enabled Decision-Making for Autonomous Driving at Intersections
    Guofa Li
    Shenglong Li
    Shen Li
    Yechen Qin
    Dongpu Cao
    Xingda Qu
    Bo Cheng
    Automotive Innovation, 2020, 3 : 374 - 385
  • [42] Lexicographic Actor-Critic Deep Reinforcement Learning for Urban Autonomous Driving
    Zhang, Hengrui
    Lin, Youfang
    Han, Sheng
    Lv, Kai
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (04) : 4308 - 4319
  • [43] Deep Reinforcement Learning Enabled Decision-Making for Autonomous Driving at Intersections
    Li, Guofa
    Li, Shenglong
    Li, Shen
    Qin, Yechen
    Cao, Dongpu
    Qu, Xingda
    Cheng, Bo
    AUTOMOTIVE INNOVATION, 2020, 3 (04) : 374 - 385
  • [44] Algorithm for Autonomous Power-Increase Operation Using Deep Reinforcement Learning and a Rule-Based System
    Lee, Daeil
    Arigi, Awwal Mohammed
    Kim, Jonghyun
    IEEE ACCESS, 2020, 8 : 196727 - 196746
  • [45] Scalable Parallel Task Scheduling for Autonomous Driving Using Multi-Task Deep Reinforcement Learning
    Qi, Qi
    Zhang, Lingxin
    Wang, Jingyu
    Sun, Haifeng
    Zhuang, Zirui
    Liao, Jianxin
    Yu, F. Richard
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) : 13861 - 13874
  • [46] Trajectory tracking algorithm for autonomous vehicles using adaptive reinforcement learning
    De Paula, Mariano
    Acosta, Gerardo G.
    OCEANS 2015 - MTS/IEEE WASHINGTON, 2015,
  • [47] A Hybrid Deep Reinforcement Learning and Optimal Control Architecture for Autonomous Highway Driving
    Albarella, Nicola
    Lui, Dario Giuseppe
    Petrillo, Alberto
    Santini, Stefania
    ENERGIES, 2023, 16 (08)
  • [48] Deep reinforcement-learning-based driving policy for autonomous road vehicles
    Makantasis, Konstantinos
    Kontorinaki, Maria
    Nikolos, Ioannis
    IET INTELLIGENT TRANSPORT SYSTEMS, 2020, 14 (01) : 13 - 24
  • [49] Combining YOLO and Deep Reinforcement Learning for Autonomous Driving in Public Roadworks Scenarios
    Andrade, Nuno
    Ribeiro, Tiago
    Coelho, Joana
    Lopes, Gil
    Ribeiro, A. Fernando
    ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 3, 2022, : 793 - 800
  • [50] Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning
    You, Changxi
    Lu, Jianbo
    Filev, Dimitar
    Tsiotras, Panagiotis
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 114 : 1 - 18