Autonomous Driving for Natural Paths Using an Improved Deep Reinforcement Learning Algorithm

被引:7
|
作者
Tseng, Kuo-Kun [1 ]
Yang, Hong
Wang, Haoyang
Yung, Kai Leung [2 ]
Lin, Regina Fang-Ying [3 ]
机构
[1] Harbin Inst Technol, Shenzhen 518055, Peoples R China
[2] Hong Kong Polytech Univ, Hong Kong, Peoples R China
[3] Shenzhen Technol Univ, Shenzhen 518118, Peoples R China
关键词
Reinforcement learning; Autonomous vehicles; Space vehicles; Roads; Neural networks; Brakes; Training;
D O I
10.1109/TAES.2022.3216579
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The purpose of this article is aimed to solve the problem associated with autonomous driving on the natural paths of planets. The contribution of this work is to propose an improved deep deterministic policy gradient (DDPG) framework for the autonomous driving on natural roads requires handling uneven surface of different throttle and braking reaction speeds. Our new finding is to design an adapted DDPG algorithm by double critic and excellent experience replay as DCEER-DDPG to reduce the overestimation of state action values. In addition, we created a virtual reality environment with TORCS simulator for fair evaluation. In the experiments, the proposed DCEER-DDPG has a better performance than previous algorithms, which can improve the utilization of driving experience on a natural path and increase the learning efficiency of the strategy. For the future applications, the proposed DCEER-DDPG is used not only on Earth, but also in lunar exploration.
引用
收藏
页码:5118 / 5128
页数:11
相关论文
共 50 条
  • [31] Trustworthy safety improvement for autonomous driving using reinforcement learning
    Cao, Zhong
    Xu, Shaobing
    Jiao, Xinyu
    Peng, Huei
    Yang, Diange
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 138
  • [32] Attention-Based Highway Safety Planner for Autonomous Driving via Deep Reinforcement Learning
    Chen, Guoxi
    Zhang, Ya
    Li, Xinde
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (01) : 162 - 175
  • [33] Deep Inverse Reinforcement Learning for Behavior Prediction in Autonomous Driving: Accurate Forecasts of Vehicle Motion
    Fernando, Tharindu
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    IEEE SIGNAL PROCESSING MAGAZINE, 2021, 38 (01) : 87 - 96
  • [34] Achieving Robust Learning Outcomes in Autonomous Driving with DynamicNoise Integration in Deep Reinforcement Learning
    Shi, Haotian
    Chen, Jiale
    Zhang, Feijun
    Liu, Mingyang
    Zhou, Mengjie
    DRONES, 2024, 8 (09)
  • [35] Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles
    Aradi, Szilard
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 740 - 759
  • [36] Unexpected Collision Avoidance Driving Strategy Using Deep Reinforcement Learning
    Kim, Myounghoe
    Lee, Seongwon
    Lim, Jaehyun
    Choi, Jongeun
    Kang, Seong Gu
    IEEE ACCESS, 2020, 8 : 17243 - 17252
  • [37] ON THE DEVELOPMENT OF AUTONOMOUS AGENTS USING DEEP REINFORCEMENT LEARNING
    Barbu, Clara
    Mocanu, Stefan Alexandru
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2021, 83 (03): : 97 - 116
  • [38] Combining Planning and Deep Reinforcement Learning in Tactical Decision Making for Autonomous Driving
    Hoel, Carl-Johan
    Driggs-Campbell, Katherine
    Wolff, Krister
    Laine, Leo
    Kochenderfer, Mykel J.
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2020, 5 (02): : 294 - 305
  • [39] End-to-End Autonomous Driving Decision Based on Deep Reinforcement Learning
    Huang, Zhiqing
    Zhang, Ji
    Tian, Rui
    Zhang, Yanxin
    CONFERENCE PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2019, : 658 - 662
  • [40] Learning a Deep Cascaded Neural Network for Multiple Motion Commands Prediction in Autonomous Driving
    Hu, Xuemin
    Tang, Bo
    Chen, Long
    Song, Sheng
    Tong, Xiuchi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (12) : 7585 - 7596