Autonomous Driving for Natural Paths Using an Improved Deep Reinforcement Learning Algorithm

被引:7
|
作者
Tseng, Kuo-Kun [1 ]
Yang, Hong
Wang, Haoyang
Yung, Kai Leung [2 ]
Lin, Regina Fang-Ying [3 ]
机构
[1] Harbin Inst Technol, Shenzhen 518055, Peoples R China
[2] Hong Kong Polytech Univ, Hong Kong, Peoples R China
[3] Shenzhen Technol Univ, Shenzhen 518118, Peoples R China
关键词
Reinforcement learning; Autonomous vehicles; Space vehicles; Roads; Neural networks; Brakes; Training;
D O I
10.1109/TAES.2022.3216579
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The purpose of this article is aimed to solve the problem associated with autonomous driving on the natural paths of planets. The contribution of this work is to propose an improved deep deterministic policy gradient (DDPG) framework for the autonomous driving on natural roads requires handling uneven surface of different throttle and braking reaction speeds. Our new finding is to design an adapted DDPG algorithm by double critic and excellent experience replay as DCEER-DDPG to reduce the overestimation of state action values. In addition, we created a virtual reality environment with TORCS simulator for fair evaluation. In the experiments, the proposed DCEER-DDPG has a better performance than previous algorithms, which can improve the utilization of driving experience on a natural path and increase the learning efficiency of the strategy. For the future applications, the proposed DCEER-DDPG is used not only on Earth, but also in lunar exploration.
引用
收藏
页码:5118 / 5128
页数:11
相关论文
共 50 条
  • [1] Autonomous Highway Driving using Deep Reinforcement Learning
    Nageshrao, Subramanya
    Tseng, H. Eric
    Filev, Dimitar
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 2326 - 2331
  • [2] Improved Deep Reinforcement Learning with Expert Demonstrations for Urban Autonomous Driving
    Liu, Haochen
    Huang, Zhiyu
    Wu, Jingda
    Lv, Chen
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 921 - 928
  • [3] Deep Learning Algorithm for Autonomous Driving using GoogLeNet
    Al-Qizwini, Mohammed
    Barjasteh, Iman
    Al-Qassab, Hothaifa
    Radha, Hayder
    2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 89 - 96
  • [4] Deep Reinforcement Learning for Autonomous Driving: A Survey
    Kiran, B. Ravi
    Sobh, Ibrahim
    Talpaert, Victor
    Mannion, Patrick
    Al Sallab, Ahmad A.
    Yogamani, Senthil
    Perez, Patrick
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 4909 - 4926
  • [5] An Improved Deep Reinforcement Learning Algorithm for Path Planning in Unmanned Driving
    Yang, Kai
    Liu, Li
    IEEE ACCESS, 2024, 12 : 67935 - 67944
  • [6] Deep Reinforcement Learning with Intervention Module for Autonomous Driving
    Chi, Huicong
    Wang, Ping
    Wang, Chao
    Wang, Xinhong
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [7] Dynamic Input for Deep Reinforcement Learning in Autonomous Driving
    Huegle, Maria
    Kalweit, Gabriel
    Mirchevska, Branka
    Werling, Moritz
    Boedecker, Joschka
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 7566 - 7573
  • [8] Deep Reinforcement Learning with Noisy Exploration for Autonomous Driving
    Li, Ruyang
    Zhang, Yaqiang
    Zhao, Yaqian
    Wei, Hui
    Xu, Zhe
    Zhao, Kun
    PROCEEDINGS OF 2022 THE 6TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING, ICMLSC 20222, 2022, : 8 - 14
  • [9] Distributed Deep Reinforcement Learning on the Cloud for Autonomous Driving
    Spryn, Mitchell
    Sharma, Aditya
    Parkar, Dhawal
    Shrimal, Madhur
    PROCEEDINGS 2018 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING FOR AI IN AUTONOMOUS SYSTEMS (SEFAIAS), 2018, : 16 - 22
  • [10] A Deep Reinforcement Learning Approach for Autonomous Highway Driving
    Zhao, Junwu
    Qu, Ting
    Xu, Fang
    IFAC PAPERSONLINE, 2020, 53 (05): : 542 - 546