Autonomous Driving for Natural Paths Using an Improved Deep Reinforcement Learning Algorithm

被引:7
|
作者
Tseng, Kuo-Kun [1 ]
Yang, Hong
Wang, Haoyang
Yung, Kai Leung [2 ]
Lin, Regina Fang-Ying [3 ]
机构
[1] Harbin Inst Technol, Shenzhen 518055, Peoples R China
[2] Hong Kong Polytech Univ, Hong Kong, Peoples R China
[3] Shenzhen Technol Univ, Shenzhen 518118, Peoples R China
关键词
Reinforcement learning; Autonomous vehicles; Space vehicles; Roads; Neural networks; Brakes; Training;
D O I
10.1109/TAES.2022.3216579
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The purpose of this article is aimed to solve the problem associated with autonomous driving on the natural paths of planets. The contribution of this work is to propose an improved deep deterministic policy gradient (DDPG) framework for the autonomous driving on natural roads requires handling uneven surface of different throttle and braking reaction speeds. Our new finding is to design an adapted DDPG algorithm by double critic and excellent experience replay as DCEER-DDPG to reduce the overestimation of state action values. In addition, we created a virtual reality environment with TORCS simulator for fair evaluation. In the experiments, the proposed DCEER-DDPG has a better performance than previous algorithms, which can improve the utilization of driving experience on a natural path and increase the learning efficiency of the strategy. For the future applications, the proposed DCEER-DDPG is used not only on Earth, but also in lunar exploration.
引用
收藏
页码:5118 / 5128
页数:11
相关论文
共 50 条
  • [1] Deep Reinforcement Learning for Autonomous Driving: A Survey
    Kiran, B. Ravi
    Sobh, Ibrahim
    Talpaert, Victor
    Mannion, Patrick
    Al Sallab, Ahmad A.
    Yogamani, Senthil
    Perez, Patrick
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 4909 - 4926
  • [2] Deep Reinforcement Learning for Autonomous Driving Based on Safety Experience Replay
    Huang, Xiaohan
    Cheng, Yuhu
    Yu, Qiang
    Wang, Xuesong
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (06) : 2070 - 2084
  • [3] Efficient Deep Reinforcement Learning With Imitative Expert Priors for Autonomous Driving
    Huang, Zhiyu
    Wu, Jingda
    Lv, Chen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7391 - 7403
  • [4] Exploiting Multi-Modal Fusion for Urban Autonomous Driving Using Latent Deep Reinforcement Learning
    Khalil, Yasser H.
    Mouftah, Hussein T.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (03) : 2921 - 2935
  • [5] Interpretable End-to-End Urban Autonomous Driving With Latent Deep Reinforcement Learning
    Chen, Jianyu
    Li, Shengbo Eben
    Tomizuka, Masayoshi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 5068 - 5078
  • [6] Compressing Deep Reinforcement Learning Networks With a Dynamic Structured Pruning Method for Autonomous Driving
    Su, Wensheng
    Li, Zhenni
    Xu, Minrui
    Kang, Jiawen
    Niyato, Dusit
    Xie, Shengli
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (12) : 18017 - 18030
  • [7] Survival-Oriented Reinforcement Learning Model: An Effcient and Robust Deep Reinforcement Learning Algorithm for Autonomous Driving Problem
    Ye, Changkun
    Ma, Huimin
    Zhang, Xiaoqin
    Zhang, Kai
    You, Shaodi
    IMAGE AND GRAPHICS (ICIG 2017), PT II, 2017, 10667 : 417 - 429
  • [8] A Selective Federated Reinforcement Learning Strategy for Autonomous Driving
    Fu, Yuchuan
    Li, Changle
    Yu, F. Richard
    Luan, Tom H.
    Zhang, Yao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 1655 - 1668
  • [9] Path Optimization for Autonomous Driving using Deep Learning
    Schitz, Dmitrij
    Aschemann, Harald
    IFAC PAPERSONLINE, 2022, 55 (27): : 490 - 496
  • [10] Deep Reinforcement Learning With NMPC Assistance Nash Switching for Urban Autonomous Driving
    Alighanbari, Sina
    Azad, Nasser L.
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (03): : 2604 - 2615