A TWO-WAY REGULARIZATION METHOD FOR MEG SOURCE RECONSTRUCTION

被引:13
作者
Tian, Tian Siva [1 ]
Huang, Jianhua Z. [2 ]
Shen, Haipeng [3 ]
Li, Zhimin [4 ]
机构
[1] Univ Houston, Dept Psychol, Houston, TX 77204 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[4] Med Coll Wisconsin, Dept Neurol, Milwaukee, WI 53226 USA
基金
美国国家科学基金会;
关键词
Inverse problem; MEG; two-way regularization; spatio-temporal; ELECTROMAGNETIC TOMOGRAPHY; PRINCIPAL-COMPONENTS; ELECTRICAL-ACTIVITY; SOURCE LOCALIZATION; INVERSE; EEG; MAGNETOENCEPHALOGRAPHY; POTENTIALS; PRIORS;
D O I
10.1214/11-AOAS531
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The MEG inverse problem refers to the reconstruction of the neural activity of the brain from magnetoencephalography (MEG) measurements. We propose a two-way regularization (TWR) method to solve the MEG inverse problem under the assumptions that only a small number of locations in space are responsible for the measured signals (focality), and each source time course is smooth in time (smoothness). The focality and smoothness of the reconstructed signals are ensured respectively by imposing a sparsity-inducing penalty and a roughness penalty in the data fitting criterion. A two-stage algorithm is developed for fast computation, where a raw estimate of the source time course is obtained in the first stage and then refined in the second stage by the two-way regularization. The proposed method is shown to be effective on both synthetic and real-world examples.
引用
收藏
页码:1021 / 1046
页数:26
相关论文
共 50 条
  • [31] A Comparison of Regularization Techniques for Magnetoencephalography Source Reconstruction
    Luan, Feng
    Lee, Chany
    Choi, Jong-Ho
    Jung, Hyun-Kyo
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3209 - 3212
  • [32] MEG current source reconstruction using a meta-analysis fMRI prior
    Suzuki, Keita
    Yamashita, Okito
    NEUROIMAGE, 2021, 236
  • [33] A general Bayesian treatment for MEG source reconstruction incorporating lead field uncertainty
    Lopez, J. D.
    Penny, W. D.
    Espinosa, J. J.
    Barnes, G. R.
    NEUROIMAGE, 2012, 60 (02) : 1194 - 1204
  • [34] Direct source reconstruction of MEG inverse problem using cerebral cortex shapes
    Hashimoto, Masaru
    Nara, Takaaki
    2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 1039 - +
  • [35] MV-PURE Spatial Filters With Application to EEG/MEG Source Reconstruction
    Piotrowski, Tomasz
    Nikadon, Jan
    Gutierrez, David
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (03) : 553 - 567
  • [36] Harmony: EEG/MEG Linear Inverse Source Reconstruction in the Anatomical Basis of Spherical Harmonics
    Petrov, Yury
    PLOS ONE, 2012, 7 (10):
  • [37] Sharing individualised template MRI data for MEG source reconstruction: A solution for open data while keeping subject confidentiality
    Vinding, Mikkel C.
    Oostenveld, Robert
    NEUROIMAGE, 2022, 254
  • [38] MEG SOURCE RECONSTRUCTION CONSTRAINED BY DIFFUSION MRI BASED WHOLE BRAIN DYNAMICAL MODEL
    Fukushima, Makoto
    Yamashita, Okito
    Knoesche, Thomas R.
    Sato, Masa-aki
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 1002 - 1005
  • [39] Source Reconstruction Accuracy of MEG and EEG Bayesian Inversion Approaches
    Belardinelli, Paolo
    Ortiz, Erick
    Barnes, Gareth
    Noppeney, Uta
    Preissl, Hubert
    PLOS ONE, 2012, 7 (12):
  • [40] Optimising the sensing volume of OPM sensors for MEG source reconstruction
    Bezsudnova, Yulia
    Koponen, Lari M.
    Barontini, Giovanni
    Jensen, Ole
    Kowalczyk, Anna U.
    NEUROIMAGE, 2022, 264