A TWO-WAY REGULARIZATION METHOD FOR MEG SOURCE RECONSTRUCTION

被引:13
作者
Tian, Tian Siva [1 ]
Huang, Jianhua Z. [2 ]
Shen, Haipeng [3 ]
Li, Zhimin [4 ]
机构
[1] Univ Houston, Dept Psychol, Houston, TX 77204 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[4] Med Coll Wisconsin, Dept Neurol, Milwaukee, WI 53226 USA
基金
美国国家科学基金会;
关键词
Inverse problem; MEG; two-way regularization; spatio-temporal; ELECTROMAGNETIC TOMOGRAPHY; PRINCIPAL-COMPONENTS; ELECTRICAL-ACTIVITY; SOURCE LOCALIZATION; INVERSE; EEG; MAGNETOENCEPHALOGRAPHY; POTENTIALS; PRIORS;
D O I
10.1214/11-AOAS531
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The MEG inverse problem refers to the reconstruction of the neural activity of the brain from magnetoencephalography (MEG) measurements. We propose a two-way regularization (TWR) method to solve the MEG inverse problem under the assumptions that only a small number of locations in space are responsible for the measured signals (focality), and each source time course is smooth in time (smoothness). The focality and smoothness of the reconstructed signals are ensured respectively by imposing a sparsity-inducing penalty and a roughness penalty in the data fitting criterion. A two-stage algorithm is developed for fast computation, where a raw estimate of the source time course is obtained in the first stage and then refined in the second stage by the two-way regularization. The proposed method is shown to be effective on both synthetic and real-world examples.
引用
收藏
页码:1021 / 1046
页数:26
相关论文
共 50 条
  • [21] MEG Source Reconstruction with Basis functions source model
    Kan, Jing
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1791 - 1794
  • [22] Selecting forward models for MEG source-reconstruction using model-evidence
    Henson, R. N.
    Mattout, J.
    Phillips, C.
    Friston, K. J.
    NEUROIMAGE, 2009, 46 (01) : 168 - 176
  • [23] A Non-Gaussian LCMV beamformer for MEG Source Reconstruction
    Mohseni, Hamid R.
    Kringelbach, Morten L.
    Woolrich, Mark W.
    Aziz, Tipu Z.
    Smith, Penny Probert
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 1247 - 1251
  • [24] Combining sparsity and rotational invariance in EEG/MEG source reconstruction
    Haufe, Stefan
    Nikulin, Vadim V.
    Ziehe, Andreas
    Mueller, Klaus-Robert
    Nolte, Guido
    NEUROIMAGE, 2008, 42 (02) : 726 - 738
  • [25] MEG/EEG Source Reconstruction, Statistical Evaluation, and Visualization with NUTMEG
    Dalal, Sarang S.
    Zumer, Johanna M.
    Guggisberg, Adrian G.
    Trumpis, Michael
    Wong, Daniel D. E.
    Sekihara, Kensuke
    Nagarajan, Srikantan S.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
  • [26] Source space localization technique for magnetoencephalography (MEG) source reconstruction
    Im, CH
    Jung, HK
    Lee, YH
    Kwon, HC
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2004, 20 (01) : 29 - 36
  • [27] Combined EEG/MEG Source Reconstruction of Epileptic Activity using a Two-Phase Spike Clustering Approach
    Dimakopoulos, Vasileios S.
    Antonakakis, Marios
    Moeddel, Gabriel
    Wellmer, Joerg
    Rampp, Stefan
    Zervakis, Michalis
    Wolters, Carsten H.
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 877 - 881
  • [28] The impact of MEG source reconstruction method on source-space connectivity estimation: A comparison between minimum-norm solution and beamforming
    Hincapie, Ana-Sofia
    Kujala, Jan
    Mattout, Jeremie
    Pascarella, Annalisa
    Daligault, Sebastien
    Delpuech, Claude
    Mery, Domingo
    Cosmelli, Diego
    Jerbi, Karim
    NEUROIMAGE, 2017, 156 : 29 - 42
  • [29] Combined EEG/MEG Can Outperform Single Modality EEG or MEG Source Reconstruction in Presurgical Epilepsy Diagnosis
    Aydin, Uemit
    Vorwerk, Johannes
    Duempelmann, Matthias
    Kuepper, Philipp
    Kugel, Harald
    Heers, Marcel
    Wellmer, Joerg
    Kellinghaus, Christoph
    Haueisen, Jens
    Rampp, Stefan
    Stefan, Hermann
    Wolters, Carsten H.
    PLOS ONE, 2015, 10 (03):
  • [30] Neuromagnetic source parameter estimation of MEG inverse problem by a synthetic nonlinear optimization method
    Hu, J
    Hu, J
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 1235 - 1238