A TWO-WAY REGULARIZATION METHOD FOR MEG SOURCE RECONSTRUCTION

被引:13
|
作者
Tian, Tian Siva [1 ]
Huang, Jianhua Z. [2 ]
Shen, Haipeng [3 ]
Li, Zhimin [4 ]
机构
[1] Univ Houston, Dept Psychol, Houston, TX 77204 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[4] Med Coll Wisconsin, Dept Neurol, Milwaukee, WI 53226 USA
来源
ANNALS OF APPLIED STATISTICS | 2012年 / 6卷 / 03期
基金
美国国家科学基金会;
关键词
Inverse problem; MEG; two-way regularization; spatio-temporal; ELECTROMAGNETIC TOMOGRAPHY; PRINCIPAL-COMPONENTS; ELECTRICAL-ACTIVITY; SOURCE LOCALIZATION; INVERSE; EEG; MAGNETOENCEPHALOGRAPHY; POTENTIALS; PRIORS;
D O I
10.1214/11-AOAS531
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The MEG inverse problem refers to the reconstruction of the neural activity of the brain from magnetoencephalography (MEG) measurements. We propose a two-way regularization (TWR) method to solve the MEG inverse problem under the assumptions that only a small number of locations in space are responsible for the measured signals (focality), and each source time course is smooth in time (smoothness). The focality and smoothness of the reconstructed signals are ensured respectively by imposing a sparsity-inducing penalty and a roughness penalty in the data fitting criterion. A two-stage algorithm is developed for fast computation, where a raw estimate of the source time course is obtained in the first stage and then refined in the second stage by the two-way regularization. The proposed method is shown to be effective on both synthetic and real-world examples.
引用
收藏
页码:1021 / 1046
页数:26
相关论文
共 50 条
  • [1] Two-Way Regularization for MEG Source Reconstruction via Multilevel Coordinate Descent
    Tian, Tian Siva
    Huang, Jianhua Z.
    Shen, Haipeng
    STATISTICAL ANALYSIS AND DATA MINING, 2013, 6 (06) : 545 - 556
  • [2] EEG/MEG Source Reconstruction with Spatial-Temporal Two-Way Regularized Regression
    Tian, Tian Siva
    Huang, Jianhua Z.
    Shen, Haipeng
    Li, Zhimin
    NEUROINFORMATICS, 2013, 11 (04) : 477 - 493
  • [3] Solving the MEG Inverse Problem: A Robust Two-Way Regularization Method
    Tian, Siva
    Huang, Jianhua Z.
    Shen, Haipeng
    TECHNOMETRICS, 2015, 57 (01) : 123 - 137
  • [4] EEG/MEG Source Reconstruction with Spatial-Temporal Two-Way Regularized Regression
    Tian Siva Tian
    Jianhua Z. Huang
    Haipeng Shen
    Zhimin Li
    Neuroinformatics, 2013, 11 : 477 - 493
  • [5] Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM
    Lopez, J. D.
    Litvak, V.
    Espinosa, J. J.
    Friston, K.J.
    Barnes, G. R.
    NEUROIMAGE, 2014, 84 : 476 - 487
  • [6] Estimating the influence of stroke lesions on MEG source reconstruction
    Piastra, Maria Carla
    Oostenveld, Robert
    Schoffelen, Jan Mathijs
    Piai, Vitoria
    NEUROIMAGE, 2022, 260
  • [7] Spatio-temporal Regularization in Linear Distributed Source Reconstruction from EEG/MEG: A Critical Evaluation
    Dannhauer, Moritz
    Laemmel, Eric
    Wolters, Carsten H.
    Knoesche, Thomas R.
    BRAIN TOPOGRAPHY, 2013, 26 (02) : 229 - 246
  • [8] Dynamic state allocation for MEG source reconstruction
    Woolrich, Mark W.
    Baker, Adam
    Luckhoo, Henry
    Mohseni, Hamid
    Barnes, Gareth
    Brookes, Matthew
    Rezek, Iead
    NEUROIMAGE, 2013, 77 : 77 - 92
  • [9] Hierarchical multiscale Bayesian algorithm for robust MEG/EEG source reconstruction
    Cai, Chang
    Sekihara, Kensuke
    Nagarajan, Srikantan S.
    NEUROIMAGE, 2018, 183 : 698 - 715
  • [10] Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging
    Ding, Lei
    Yuan, Han
    HUMAN BRAIN MAPPING, 2013, 34 (04) : 775 - 795