Application of excel solver for parameter estimation of the nonlinear Muskingum models

被引:117
|
作者
Barati, Reza [1 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Young Researchers Club & Elites, Mashhad 9187147578, Iran
关键词
flood routing; hydrologic model; spreadsheets; parameter; estimation; LONGITUDINAL DISPERSION COEFFICIENT; CLONAL SELECTION ALGORITHM; CONSTRAINED OPTIMIZATION; ROUTING MODEL; FUZZY-LOGIC; FLOW;
D O I
10.1007/s12205-013-0037-2
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The Muskingum model continues to be a popular procedure for river flood routing. An important aspect in nonlinear Muskingum models is the calibration of the model parameters. The current study presents the application of commonly available spreadsheet software, Microsoft Excel 2010, for the purpose of estimating the parameters of nonlinear Muskingum routing models. Main advantage of this approach is that it can calibrate the parameters using two different ways without knowing the exact details of optimization techniques. These procedures consist of (1) Generalized Reduced Gradient (GRG) solver and (2) evolutionary solver. The first one needs the initial values assumption for the parameter estimation while the latter requires the determination of the algorithm parameters. The results of the simulation of an example that is a benchmark problem for parameter estimation of the nonlinear Muskingum models indicate that Excel solver is a promising way to reduce problems of the parameter estimation of the nonlinear Muskingum routing models. Furthermore, the results indicate that the efficiency of Excel solver for the parameter estimation of the models can be increased, if both GRG and evolutionary solvers are used together.
引用
收藏
页码:1139 / 1148
页数:10
相关论文
共 50 条
  • [41] Application of Neural Networks to External Parameter Estimation for Nonlinear Vehicle Models
    Gräber T.
    Schäfer M.
    Unterreiner M.
    Schramm D.
    SAE International Journal of Connected and Automated Vehicles, 2021, 4 (03): : 297 - 312
  • [42] Sensitivity models for nonlinear filters with application to recursive parameter estimation for nonlinear state-space models
    Bohn, C
    Unbehauen, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (02): : 137 - 145
  • [43] A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm
    Zhang, Song
    Kang, Ling
    Zhou, Liwei
    Guo, Xiaoming
    HYDROLOGY RESEARCH, 2017, 48 (01): : 17 - 27
  • [44] Closure to "Assessment of Modified Honey Bee Mating Optimization for Parameter Estimation of Nonlinear Muskingum Models" by Majid Niazkar and Seied Hosein Afzali
    Niazkar, Majid
    Afzali, Seied Hosein
    JOURNAL OF HYDROLOGIC ENGINEERING, 2018, 23 (04)
  • [45] Improved Nonlinear Muskingum Model with Variable Exponent Parameter
    Easa, Said M.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2013, 18 (12) : 1790 - 1794
  • [46] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    Barati, Reza
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2014, 167 (06) : 365 - 367
  • [47] An Excel Solver Exercise to Introduce Nonlinear Regression
    Pinder, Jonathan P.
    DECISION SCIENCES-JOURNAL OF INNOVATIVE EDUCATION, 2013, 11 (03) : 263 - 278
  • [48] Parameter estimation of nonlinear growth models in forestry
    Fekedulegn, D
    Mac Siurtain, MP
    Colbert, JJ
    SILVA FENNICA, 1999, 33 (04) : 327 - 336
  • [49] Parameter estimation for nonlinear dynamical adjustment models
    Xiao, Yongsong
    Yue, Na
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (5-6) : 1561 - 1568
  • [50] ROBUST PARAMETER-ESTIMATION FOR NONLINEAR MODELS
    LOEHLE, C
    ECOLOGICAL MODELLING, 1988, 41 (1-2) : 41 - 54