Application of excel solver for parameter estimation of the nonlinear Muskingum models

被引:117
|
作者
Barati, Reza [1 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Young Researchers Club & Elites, Mashhad 9187147578, Iran
关键词
flood routing; hydrologic model; spreadsheets; parameter; estimation; LONGITUDINAL DISPERSION COEFFICIENT; CLONAL SELECTION ALGORITHM; CONSTRAINED OPTIMIZATION; ROUTING MODEL; FUZZY-LOGIC; FLOW;
D O I
10.1007/s12205-013-0037-2
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The Muskingum model continues to be a popular procedure for river flood routing. An important aspect in nonlinear Muskingum models is the calibration of the model parameters. The current study presents the application of commonly available spreadsheet software, Microsoft Excel 2010, for the purpose of estimating the parameters of nonlinear Muskingum routing models. Main advantage of this approach is that it can calibrate the parameters using two different ways without knowing the exact details of optimization techniques. These procedures consist of (1) Generalized Reduced Gradient (GRG) solver and (2) evolutionary solver. The first one needs the initial values assumption for the parameter estimation while the latter requires the determination of the algorithm parameters. The results of the simulation of an example that is a benchmark problem for parameter estimation of the nonlinear Muskingum models indicate that Excel solver is a promising way to reduce problems of the parameter estimation of the nonlinear Muskingum routing models. Furthermore, the results indicate that the efficiency of Excel solver for the parameter estimation of the models can be increased, if both GRG and evolutionary solvers are used together.
引用
收藏
页码:1139 / 1148
页数:10
相关论文
共 50 条
  • [21] New nonlinear variable-parameter Muskingum models
    Niazkar, Majid
    Afzali, Seied Hosein
    KSCE JOURNAL OF CIVIL ENGINEERING, 2017, 21 (07) : 2958 - 2967
  • [22] Application of a Hybrid Optimization Method in Muskingum Parameter Estimation
    Bozorg-Haddad, Omid
    Hamedi, Farzan
    Fallah-Mehdipour, Elahe
    Orouji, Hosein
    Marino, Miguel A.
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2015, 141 (12)
  • [23] Parameter estimation of the nonlinear Muskingum model using harmony search
    Kim, JH
    Geem, ZW
    Kim, ES
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2001, 37 (05): : 1131 - 1138
  • [24] Estimation of Nonlinear Muskingum Model Parameter Using Differential Evolution
    Xu, Dong-Mei
    Qiu, Lin
    Chen, Shou-Yu
    JOURNAL OF HYDROLOGIC ENGINEERING, 2012, 17 (02) : 348 - 353
  • [25] Parameter estimation for the nonlinear Muskingum model using the BFGS technique
    Geem, Zong Woo
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2006, 132 (05) : 474 - 478
  • [26] Parameter Estimation of Two Improved Nonlinear Muskingum Models Considering the Lateral Flow Using a Hybrid Algorithm
    Kang, Ling
    Zhou, Liwei
    Zhang, Song
    WATER RESOURCES MANAGEMENT, 2017, 31 (14) : 4449 - 4467
  • [27] Parameter Estimation of Two Improved Nonlinear Muskingum Models Considering the Lateral Flow Using a Hybrid Algorithm
    Ling Kang
    Liwei Zhou
    Song Zhang
    Water Resources Management, 2017, 31 : 4449 - 4467
  • [28] Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model
    Chu, Hone-Jay
    Chang, Liang-Cheng
    JOURNAL OF HYDROLOGIC ENGINEERING, 2009, 14 (09) : 1024 - 1027
  • [29] Issues in optimal parameter estimation for the nonlinear Muskingum flood routing model
    Geem, Zong Woo
    ENGINEERING OPTIMIZATION, 2014, 46 (03) : 328 - 339
  • [30] Estimating parameter precision in nonlinear least squares with excel's solver
    de Levie, R
    JOURNAL OF CHEMICAL EDUCATION, 1999, 76 (11) : 1594 - 1598