Conditioned limit theorems for products of positive random matrices

被引:11
作者
Thi Da Cam Pham [1 ,2 ]
机构
[1] Univ Tours, Univ Orleans, Inst Denis Poisson, CNRS, Tours, France
[2] Parc Grandmont, F-37200 Tours, France
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2018年 / 15卷 / 01期
关键词
Exit time; Markov chains; product of random matrices; RANDOM-WALKS; INVARIANCE-PRINCIPLE; CONVERGENCE;
D O I
10.30757/ALEA.v15-04
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inspired by a recent paper of I. Grama, E. Le Page and M. Peigne (Grama et al., 2014), we consider a sequence (g(n))(n >= 1) of i.i.d. random d x d-matrices with non-negative entries and study the fluctuations of the process (log vertical bar g(n) ... g(1)x vertical bar)(n >= 1) for any non-zero vector x in R-d with non-negative coordinates. Our method involves approximating this process by a martingale and studying harmonic functions for its restriction to the upper half line. Under certain conditions, the probability for this process to stay in the upper half real line up to time n decreases as c/root n for some positive constant c.
引用
收藏
页码:67 / 100
页数:34
相关论文
共 19 条
[1]   CENTRAL LIMIT THEOREM FOR LINEAR GROUPS [J].
Benoist, Yves ;
Quint, Jean-Francois .
ANNALS OF PROBABILITY, 2016, 44 (02) :1308-1340
[2]   FUNCTIONAL CENTRAL LIMIT-THEOREM FOR RANDOM-WALKS CONDITIONED TO STAY POSITIVE [J].
BOLTHAUSEN, E .
ANNALS OF PROBABILITY, 1976, 4 (03) :480-485
[3]  
Bougerol P., 1985, Progress in Probability and Statistics, V8
[4]   RANDOM WALKS IN CONES [J].
Denisov, Denis ;
Wachtel, Vitali .
ANNALS OF PROBABILITY, 2015, 43 (03) :992-1044
[5]  
Dunford N., 1988, WILEY CLASSICS LIB
[6]   PRODUCTS OF RANDOM MATRICES [J].
FURSTENBERG, H ;
KESTEN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02) :457-469
[7]   ON THE RATE OF CONVERGENCE IN THE WEAK INVARIANCE PRINCIPLE FOR DEPENDENT RANDOM VARIABLES WITH APPLICATIONS TO MARKOV CHAINS [J].
Grama, Ion ;
Le Page, Emile ;
Peigne, Marc .
COLLOQUIUM MATHEMATICUM, 2014, 134 (01) :1-55
[8]   THE FURSTENBERG BOUNDARY, CONTRACTION PROPERTIES AND CONVERGENCE THEOREMS [J].
GUIVARCH, Y ;
RAUGI, A .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (02) :187-242
[9]   LARGE NUMBER LAW AND PERTURBATIONS FOR REDUCIBLE PRODUCTS OF INDEPENDENT ALEATORY MATRICES [J].
HENNION, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 67 (03) :265-278
[10]   Stable laws and products of positive random matrices [J].
Hennion, H. ;
Herve, L. .
JOURNAL OF THEORETICAL PROBABILITY, 2008, 21 (04) :966-981