Meet Homological Mirror Symmetry

被引:0
|
作者
Ballard, Matthew Robert [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
来源
MODULAR FORMS AND STRING DUALITY | 2008年 / 54卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the interested reader to homological mirror symmetry. After recalling a little background knowledge, we tackle the simplest cases of homological mirror symmetry: curves of genus zero and one. We close by outlining the current state of the field and mentioning what homological mirror symmetry has to say about other aspects of mirror symmetry.
引用
收藏
页码:191 / 224
页数:34
相关论文
共 50 条
  • [41] Homological mirror symmetry for invertible polynomials in two variables
    Habermann, Matthew
    QUANTUM TOPOLOGY, 2022, 13 (02) : 207 - 253
  • [42] Lagrangian Torus Fibrations and Homological Mirror Symmetry for the Conifold
    Chan, Kwokwai
    Pomerleano, Daniel
    Ueda, Kazushi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) : 135 - 178
  • [43] Homological Mirror Symmetry, coisotropic branes and P = W
    Katzarkov, Ludmil
    Soriani, Leonardo
    EUROPEAN JOURNAL OF MATHEMATICS, 2018, 4 (03) : 1141 - 1160
  • [44] Homological mirror symmetry for the quintic 3-fold
    Nohara, Yuichi
    Ueda, Kazushi
    GEOMETRY & TOPOLOGY, 2012, 16 (04) : 1967 - 2001
  • [45] Homological mirror symmetry for toric del Pezzo surfaces
    Ueda, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (01) : 71 - 85
  • [46] Aspects of functoriality in homological mirror symmetry for toric varieties
    Hanlon, A.
    Hicks, J.
    ADVANCES IN MATHEMATICS, 2022, 401
  • [47] Lagrangian Torus Fibrations and Homological Mirror Symmetry for the Conifold
    Kwokwai Chan
    Daniel Pomerleano
    Kazushi Ueda
    Communications in Mathematical Physics, 2016, 341 : 135 - 178
  • [48] Homological mirror symmetry for Brieskorn-Pham singularities
    Futaki, Masahiro
    Ueda, Kazushi
    SELECTA MATHEMATICA-NEW SERIES, 2011, 17 (02): : 435 - 452
  • [49] Homological mirror symmetry for generalized Greene–Plesser mirrors
    Nick Sheridan
    Ivan Smith
    Inventiones mathematicae, 2021, 224 : 627 - 682
  • [50] Homological mirror symmetry is T-duality for Pn
    Fang, Bohan
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2008, 2 (04) : 719 - 742