Rapid fabrication of nickel molds for prototyping embossed plastic microfluidic devices

被引:39
作者
Novak, Richard [1 ]
Ranu, Navpreet [2 ]
Mathies, Richard A. [1 ,3 ]
机构
[1] Univ Calif Berkeley, Bioengn Program, Berkeley, CA 94720 USA
[2] MIT, Dept Bioengn, Cambridge, MA 02139 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
关键词
CHIPS; MICROSTRUCTURES; LAMINATION; POLYMER; EPOXY;
D O I
10.1039/c3lc41362d
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The production of hot embossed plastic microfluidic devices is demonstrated in 1-2 h by exploiting vinyl adhesive stickers as masks for electroplating nickel molds. The sticker masks are cut directly from a CAD design using a cutting plotter and transferred to steel wafers for nickel electroplating. The resulting nickel molds are used to hot emboss a variety of plastic substrates, including cyclo-olefin copolymer and THV fluorinated thermoplastic elastomer. Completed devices are formed by bonding a blank sheet to the embossed layer using a solvent-assisted lamination method. For example, a microfluidic valve array or automaton and a droplet generator were fabricated with less than 100 mm x-y plane feature resolution, to within 9% of the target height, and with 90 perpendicular to 11% height uniformity over 5 cm. This approach for mold fabrication, embossing, and bonding reduces fabrication time and cost for research applications by avoiding photoresists, lithography masks, and the cleanroom.
引用
收藏
页码:1468 / 1471
页数:4
相关论文
共 29 条
[1]  
Bartholomeusz DA, 2005, J MICROELECTROMECH S, V14, P1364, DOI 10.1109/JMEMS.2005.859087
[2]   Polymer microfluidic devices [J].
Becker, H ;
Locascio, LE .
TALANTA, 2002, 56 (02) :267-287
[3]   Commercialization of microfluidic point-of-care diagnostic devices [J].
Chin, Curtis D. ;
Linder, Vincent ;
Sia, Samuel K. .
LAB ON A CHIP, 2012, 12 (12) :2118-2134
[4]   A parallel microfluidic channel fixture fabricated using laser ablated plastic laminates for electrochemical and chemiluminescent biodetection of DNA [J].
Edwards, Thayne L. ;
Harper, Jason C. ;
Polsky, Ronen ;
Lopez, DeAnna M. ;
Wheeler, David R. ;
Allen, Amy C. ;
Brozik, Susan M. .
BIOMICROFLUIDICS, 2011, 5 (04)
[5]   Disposable microfluidic devices: fabrication, function, and application [J].
Fiorini, GS ;
Chiu, DT .
BIOTECHNIQUES, 2005, 38 (03) :429-446
[6]   Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds [J].
Fiorini, GS ;
Jeffries, GDM ;
Lim, DSW ;
Kuyper, CL ;
Chiu, DT .
LAB ON A CHIP, 2003, 3 (03) :158-163
[7]   Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds [J].
Goral, Vasiliy N. ;
Hsieh, Yi-Cheng ;
Petzold, Odessa N. ;
Faris, Ronald A. ;
Yuen, Po Ki .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (01)
[8]   Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices [J].
Grover, WH ;
Skelley, AM ;
Liu, CN ;
Lagally, ET ;
Mathies, RA .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 89 (03) :315-323
[9]   Functionalization of cyclo-olefin polymer substrates by plasma oxidation: Stable film containing carboxylic acid groups for capturing biorecognition elements [J].
Gubala, Vladimir ;
Le, Nam Cao Hoai ;
Gandhiraman, Ram Prasad ;
Coyle, Conor ;
Daniels, Stephen ;
Williams, David E. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2010, 81 (02) :544-548
[10]   Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices [J].
Hupert, Mateusz L. ;
Guy, W. Jason ;
Llopis, Shawn D. ;
Shadpour, Hamed ;
Rani, Sudheer ;
Nikitopoulos, Dimitris E. ;
Soper, Steven A. .
MICROFLUIDICS AND NANOFLUIDICS, 2007, 3 (01) :1-11