CATEGORIFIED INVARIANTS AND THE BRAID GROUP

被引:20
作者
Baldwin, John A. [1 ]
Grigsby, J. Elisenda [1 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
基金
美国国家科学基金会;
关键词
KNOT FLOER HOMOLOGY; TRANSVERSE KNOTS; BURAU REPRESENTATION; HOLOMORPHIC DISKS; KHOVANOV HOMOLOGY; LEGENDRIAN KNOTS; FAITHFUL; BOUNDARY;
D O I
10.1090/S0002-9939-2015-12482-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate two "categorified" braid conjugacy class invariants, one coming from Khovanov homology and the other from Heegaard Floer homology. We prove that each yields a solution to the word problem but not the conjugacy problem in the braid group. In particular, our proof in the Khovanov case is completely combinatorial.
引用
收藏
页码:2801 / 2814
页数:14
相关论文
共 41 条
[31]  
Margalit D., 2012, PRINCETON MATH SERIE, V49
[33]  
Morton H. R, 1999, CONT MATH, V233, P167
[34]   Combinatorial knot contact homology and transverse knots [J].
Ng, Lenhard .
ADVANCES IN MATHEMATICS, 2011, 227 (06) :2189-2219
[35]  
Ni Y., 2010, MATHGT10102808
[36]   Holomorphic disks and genus bounds [J].
Ozsváth, P ;
Szabó, Z .
GEOMETRY & TOPOLOGY, 2004, 8 :311-334
[37]  
OZSVATH P, 2005, MATHGT0512286
[38]   Legendrian knots, transverse knots and combinatorial Floer homology [J].
Ozsvath, Peter ;
Szabo, Zoltan ;
Thurston, Dylan .
GEOMETRY & TOPOLOGY, 2008, 12 :941-980
[39]   Holomorphic disks, link invariants and the multi-variable Alexander polynomial [J].
Ozsvath, Peter ;
Szabo, Zoltan .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (02) :615-692
[40]  
Plamenevskaya O, 2006, MATH RES LETT, V13, P571