CATEGORIFIED INVARIANTS AND THE BRAID GROUP

被引:20
作者
Baldwin, John A. [1 ]
Grigsby, J. Elisenda [1 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
基金
美国国家科学基金会;
关键词
KNOT FLOER HOMOLOGY; TRANSVERSE KNOTS; BURAU REPRESENTATION; HOLOMORPHIC DISKS; KHOVANOV HOMOLOGY; LEGENDRIAN KNOTS; FAITHFUL; BOUNDARY;
D O I
10.1090/S0002-9939-2015-12482-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate two "categorified" braid conjugacy class invariants, one coming from Khovanov homology and the other from Heegaard Floer homology. We prove that each yields a solution to the word problem but not the conjugacy problem in the braid group. In particular, our proof in the Khovanov case is completely combinatorial.
引用
收藏
页码:2801 / 2814
页数:14
相关论文
共 41 条
[1]  
[Anonymous], 2011, CONT MATH, V560
[2]  
Asaeda Marta M., 2004, ALGEBR GEOM TOPOL, V4, P1177, DOI [10.2140/agt.2004.4.1177, DOI 10.2140/AGT.2004.4.1177]
[3]  
Auroux D., 2013, MATHGT13031986
[4]   On the equivalence of Legendrian and transverse invariants in knot Floer homology [J].
Baldwin, John A. ;
Vela-Vick, David Shea ;
Vertesi, Vera .
GEOMETRY & TOPOLOGY, 2013, 17 (02) :925-974
[5]  
Batson J., 2013, MATHGT13036240
[6]   Braid groups are linear [J].
Bigelow, SJ .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) :471-486
[7]   The Burau representation is not faithful for n=5 [J].
Bigelow, Stephen .
GEOMETRY & TOPOLOGY, 1999, 3 :397-404
[8]  
Birman Joan S., 2008, COMMUN CONT MATH S1, V10, P1033, DOI [10.1142/S0219199708003150, DOI 10.1142/S0219199708003150]
[9]  
Birman Joan S., 2005, HDB KNOT THEORY, P19, DOI [10.1016/B978-044451452-3/50003-4, DOI 10.1016/B978-044451452-3/50003-4]
[10]  
Birman Joan S., 1992, T AM MATH SOC, V329, P585, DOI [10.2307/2153953, DOI 10.2307/2153953]