CATEGORIFIED INVARIANTS AND THE BRAID GROUP

被引:18
作者
Baldwin, John A. [1 ]
Grigsby, J. Elisenda [1 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
基金
美国国家科学基金会;
关键词
KNOT FLOER HOMOLOGY; TRANSVERSE KNOTS; BURAU REPRESENTATION; HOLOMORPHIC DISKS; KHOVANOV HOMOLOGY; LEGENDRIAN KNOTS; FAITHFUL; BOUNDARY;
D O I
10.1090/S0002-9939-2015-12482-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate two "categorified" braid conjugacy class invariants, one coming from Khovanov homology and the other from Heegaard Floer homology. We prove that each yields a solution to the word problem but not the conjugacy problem in the braid group. In particular, our proof in the Khovanov case is completely combinatorial.
引用
收藏
页码:2801 / 2814
页数:14
相关论文
共 41 条
  • [1] [Anonymous], 2011, CONT MATH, V560
  • [2] Asaeda Marta M., 2004, ALGEBR GEOM TOPOL, V4, P1177, DOI [10.2140/agt.2004.4.1177, DOI 10.2140/AGT.2004.4.1177]
  • [3] Auroux D., 2013, MATHGT13031986
  • [4] On the equivalence of Legendrian and transverse invariants in knot Floer homology
    Baldwin, John A.
    Vela-Vick, David Shea
    Vertesi, Vera
    [J]. GEOMETRY & TOPOLOGY, 2013, 17 (02) : 925 - 974
  • [5] Batson J., 2013, MATHGT13036240
  • [6] Braid groups are linear
    Bigelow, SJ
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) : 471 - 486
  • [7] The Burau representation is not faithful for n=5
    Bigelow, Stephen
    [J]. GEOMETRY & TOPOLOGY, 1999, 3 : 397 - 404
  • [8] Birman Joan S., 2008, COMMUN CONT MATH S1, V10, P1033, DOI [10.1142/S0219199708003150, DOI 10.1142/S0219199708003150]
  • [9] Birman Joan S., 2005, HDB KNOT THEORY, P19, DOI [10.1016/B978-044451452-3/50003-4, DOI 10.1016/B978-044451452-3/50003-4]
  • [10] Birman Joan S., 1992, T AM MATH SOC, V329, P585, DOI [10.2307/2153953, DOI 10.2307/2153953]