A monotonicity preserving, nonlinear, finite element upwind method for the transport equation

被引:10
作者
Burman, Erik [1 ]
机构
[1] Univ London Univ Coll, Dept Math, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Stabilized finite element method; Shock capturing; Flux correction; Monotonicity preserving; Transport equation; DISCRETE MAXIMUM PRINCIPLE;
D O I
10.1016/j.aml.2015.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a simple upwind finite element method that is monotonicity preserving and weakly consistent of order O(h(3/2)). The scheme is nonlinear, but since an explicit time integration method is used the added cost due to the nonlinearity is not prohibitive. We prove the monotonicity preserving property for the forward Euler method and for a second order Runge Kutta method. The convergence properties of the Runge Kutta finite element method are verified on a numerical example. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 9 条
[1]   ON MONOTONICITY-PRESERVING STABILIZED FINITE ELEMENT APPROXIMATIONS OF TRANSPORT PROBLEMS [J].
Badia, Santiago ;
Hierro, Alba .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (06) :A2673-A2697
[2]   Stabilized Galerkin approximation of convection-diffusion-reaction equations: Discrete maximum principle and convergence [J].
Burman, E ;
Ern, A .
MATHEMATICS OF COMPUTATION, 2005, 74 (252) :1637-1652
[3]   On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws [J].
Burman, Erik .
BIT NUMERICAL MATHEMATICS, 2007, 47 (04) :715-733
[4]   A SECOND-ORDER MAXIMUM PRINCIPLE PRESERVING LAGRANGE FINITE ELEMENT TECHNIQUE FOR NONLINEAR SCALAR CONSERVATION EQUATIONS [J].
Guermond, Jean-Luc ;
Nazarov, Murtazo ;
Popov, Bojan ;
Yang, Yong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) :2163-2182
[5]   New development in freefem++ [J].
Hecht, F. .
JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (3-4) :251-265
[6]   Flux correction tools for finite elements [J].
Kuzmin, D ;
Turek, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) :525-558
[7]   FINITE-ELEMENT FLUX-CORRECTED TRANSPORT (FEM-FCT) FOR THE EULER AND NAVIER-STOKES EQUATIONS [J].
LOHNER, R ;
MORGAN, K ;
PERAIRE, J ;
VAHDATI, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1987, 7 (10) :1093-1109
[8]   A review and comparative study of upwind biased schemes for compressible flow computation. Part III: Multidimensional extension on unstructured grids [J].
Lyra, PRM ;
Morgan, K .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2002, 9 (03) :207-256
[9]   A PETROV-GALERKIN FINITE-ELEMENT METHOD FOR CONVECTION-DOMINATED FLOWS - AN ACCURATE UPWINDING TECHNIQUE FOR SATISFYING THE MAXIMUM PRINCIPLE [J].
MIZUKAMI, A ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1985, 50 (02) :181-193