Genome-wide analysis of the MYB transcription factor superfamily in soybean

被引:338
作者
Du, Hai [1 ,2 ]
Yang, Si-Si [1 ]
Liang, Zhe [3 ]
Feng, Bo-Run [1 ]
Liu, Lei
Huang, Yu-Bi [1 ]
Tang, Yi-Xiong [2 ]
机构
[1] Sichuan Agr Univ, Maize Res Inst, Key Lab Biol & Genet Improvement Maize SW Reg, Minist Agr, Chengdu, Sichuan, Peoples R China
[2] Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100193, Peoples R China
[3] Norwegian Univ Life Sci, Dept Plant & Environm Sci, N-1432 Trondheim, Norway
来源
BMC PLANT BIOLOGY | 2012年 / 12卷
基金
中国国家自然科学基金;
关键词
MULTIPLE SEQUENCE ALIGNMENT; R2R3-MYB GENE FAMILY; DNA-BINDING DOMAIN; ONE BILLION YEARS; MEDICAGO-TRUNCATULA; C-MYB; GLUCOSINOLATE BIOSYNTHESIS; FLAVONOL ACCUMULATION; LOTUS-JAPONICUS; BHLH FACTORS;
D O I
10.1186/1471-2229-12-106
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: The MYB superfamily constitutes one of the most abundant groups of transcription factors described in plants. Nevertheless, their functions appear to be highly diverse and remain rather unclear. To date, no genome-wide characterization of this gene family has been conducted in a legume species. Here we report the first genome-wide analysis of the whole MYB superfamily in a legume species, soybean (Glycine max), including the gene structures, phylogeny, chromosome locations, conserved motifs, and expression patterns, as well as a comparative genomic analysis with Arabidopsis. Results: A total of 244 R2R3-MYB genes were identified and further classified into 48 subfamilies based on a phylogenetic comparative analysis with their putative orthologs, showed both gene loss and duplication events. The phylogenetic analysis showed that most characterized MYB genes with similar functions are clustered in the same subfamily, together with the identification of orthologs by synteny analysis, functional conservation among subgroups of MYB genes was strongly indicated. The phylogenetic relationships of each subgroup of MYB genes were well supported by the highly conserved intron/exon structures and motifs outside the MYB domain. Synonymous nucleotide substitution (d(N)/d(S)) analysis showed that the soybean MYB DNA-binding domain is under strong negative selection. The chromosome distribution pattern strongly indicated that genome-wide segmental and tandem duplication contribute to the expansion of soybean MYB genes. In addition, we found that similar to 4% of soybean R2R3-MYB genes had undergone alternative splicing events, producing a variety of transcripts from a single gene, which illustrated the extremely high complexity of transcriptome regulation. Comparative expression profile analysis of R2R3-MYB genes in soybean and Arabidopsis revealed that MYB genes play conserved and various roles in plants, which is indicative of a divergence in function. Conclusions: In this study we identified the largest MYB gene family in plants known to date. Our findings indicate that members of this large gene family may be involved in different plant biological processes, some of which may be potentially involved in legume-specific nodulation. Our comparative genomics analysis provides a solid foundation for future functional dissection of this family gene.
引用
收藏
页数:22
相关论文
共 85 条
  • [1] Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling
    Abe, H
    Urao, T
    Ito, T
    Seki, M
    Shinozaki, K
    Yamaguchi-Shinozaki, K
    [J]. PLANT CELL, 2003, 15 (01) : 63 - 78
  • [2] The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco
    Aharoni, A
    De Vos, CHR
    Wein, M
    Sun, ZK
    Greco, R
    Kroon, A
    Mol, JNM
    O'Connell, AP
    [J]. PLANT JOURNAL, 2001, 28 (03) : 319 - 332
  • [3] One billion years of bZIP transcription factor evolution: Conservation and change in dimerization and DNA-binding site specificity
    Amoutzias, G. D.
    Veron, A. S.
    Weiner, J., III
    Robinson-Rechavi, M.
    Bornberg-Bauer, E.
    Oliver, S. G.
    Robertson, D. L.
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2007, 24 (03) : 827 - 835
  • [4] The InterPro database, an integrated documentation resource for protein families, domains and functional sites
    Apweiler, R
    Attwood, TK
    Bairoch, A
    Bateman, A
    Birney, E
    Biswas, M
    Bucher, P
    Cerutti, T
    Corpet, F
    Croning, MDR
    Durbin, R
    Falquet, L
    Fleischmann, W
    Gouzy, J
    Hermjakob, H
    Hulo, N
    Jonassen, I
    Kahn, D
    Kanapin, A
    Karavidopoulou, Y
    Lopez, R
    Marx, B
    Mulder, NJ
    Oinn, TM
    Pagni, M
    Servant, F
    Sigrist, CJA
    Zdobnov, EM
    [J]. NUCLEIC ACIDS RESEARCH, 2001, 29 (01) : 37 - 40
  • [5] A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus
    Asamizu, Erika
    Shimoda, Yoshikazu
    Kouchi, Hiroshi
    Tabata, Satoshi
    Sato, Shusei
    [J]. PLANT PHYSIOLOGY, 2008, 147 (04) : 2030 - 2040
  • [6] MEME: discovering and analyzing DNA and protein sequence motifs
    Bailey, Timothy L.
    Williams, Nadya
    Misleh, Chris
    Li, Wilfred W.
    [J]. NUCLEIC ACIDS RESEARCH, 2006, 34 : W369 - W373
  • [7] Combining evidence using p-values: application to sequence homology searches
    Bailey, TL
    Gribskov, M
    [J]. BIOINFORMATICS, 1998, 14 (01) : 48 - 54
  • [8] TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana
    Baudry, A
    Heim, MA
    Dubreucq, B
    Caboche, M
    Weisshaar, B
    Lepiniec, L
    [J]. PLANT JOURNAL, 2004, 39 (03) : 366 - 380
  • [9] TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana
    Baudry, Antoine
    Caboche, Michel
    Lepiniec, Loic
    [J]. PLANT JOURNAL, 2006, 46 (05) : 768 - 779
  • [10] Control of cell and petal morphogenesis by R2R3 MYB transcription factors
    Baumann, Kim
    Perez-Rodriguez, Maria
    Bradley, Desmond
    Venail, Julien
    Bailey, Paul
    Jin, Hailing
    Koes, Ronald
    Roberts, Keith
    Martin, Cathie
    [J]. DEVELOPMENT, 2007, 134 (09): : 1691 - 1701