Properties of the Vlasov-Maxwell-Einstein Equations and Their Application to the Problems of General Relativity

被引:4
作者
Vedenyapin, V. V. [1 ,2 ]
Fimin, N. N. [1 ]
Chechetkin, V. M. [1 ,3 ]
机构
[1] Russian Acad Sci, Keldysh Inst Appled Math, Fed Res Ctr, Miusskaya Pl 4, Moscow 1250477, Russia
[2] Peoples Friendship Univ Russia, RUDN Univ, Ul Miklukho Maklaya 6, Moscow 117198, Russia
[3] Natl Res Ctr, Kurchatov Inst, Pl Akad Kurchatova 1, Moscow 123182, Russia
关键词
TIME AVERAGES; BOLTZMANN; SYSTEM;
D O I
10.1134/S0202289320020115
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A new universal method is proposed for obtaining Vlasov-type equations for systems of interacting massive charged particles from the general-relativistic Einstein-Hilbert action. At the same time, a new effective approach to synchronizing the proper times of various particles of a many-particle system has been introduced. A new form of the energy-momentum tensor for matter (and the right-hand side of Einstein's equations) is obtained.
引用
收藏
页码:173 / 183
页数:11
相关论文
共 40 条
[21]  
Landau LD., 1987, The classical theory of fields
[22]  
Narlikar J V., 1993, Introduction to Cosmology, VIInd edn
[23]  
Negmatov M. A., 2014, J MATH SCI N Y, V202, P769, DOI [10.1007/s10958-014-2075-9, DOI 10.1007/s10958-014-2075-9]
[24]   GENERIC GLOBAL-SOLUTIONS OF THE RELATIVISTIC VLASOV-MAXWELL SYSTEM OF PLASMA PHYSICS [J].
REIN, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) :41-78
[25]  
Vedenyapin V, 2011, KINETIC BOLTZMANN, VLASOV AND RELATED EQUATIONS, P1
[26]   Time Averages and Boltzmann Extremals [J].
Vedenyapin, V. V. .
DOKLADY MATHEMATICS, 2008, 78 (02) :686-688
[27]   Equation of Vlasov-Maxwell-Einstein Type and Transition to a Weakly Relativistic Approximation [J].
Vedenyapin, V. V. ;
Fimin, N. N. ;
Chechetkin, V. M. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (11) :1816-1831
[28]   Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences [J].
Vedenyapin, V. V. ;
Negmatov, M. A. ;
Fimin, N. N. .
IZVESTIYA MATHEMATICS, 2017, 81 (03) :505-541
[29]   Entropy in the sense of Boltzmann and Poincare [J].
Vedenyapin, V. V. ;
Adzhiev, S. Z. .
RUSSIAN MATHEMATICAL SURVEYS, 2014, 69 (06) :995-1029
[30]   Derivation and classification of Vlasov-type and magnetohydrodynamics equations: Lagrange identity and Godunov's form [J].
Vedenyapin, V. V. ;
Negmatov, M. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 170 (03) :394-405