The main features of self-consistent pressure profile formation

被引:22
作者
Razumova, K. A. [1 ]
Andreev, V. F. [1 ]
Dnestrovskij, A. Yu [1 ]
Kislov, A. Ya [1 ]
Kirneva, N. A. [1 ]
Lysenko, S. E. [1 ]
Pavlov, Yu D. [1 ]
Poznyak, V. I. [1 ]
Shafranov, T. V. [1 ]
Trukhina, E. V. [1 ]
Zhuravlev, V. A. [1 ]
Donne, A. J. H. [2 ]
Hogeweij, G. M. D. [2 ]
机构
[1] RRC Kurchatov Inst, Nucl Fus Inst, Moscow 123182, Russia
[2] EURATOM, FOM, Inst Plasma Phys Rijnhuizen, Trilateral Euregio Cluster, NL-3430 BE Nieuwegein, Netherlands
关键词
D O I
10.1088/0741-3335/50/10/105004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The self-organization of a tokamak plasma is a fundamental turbulent plasma phenomenon, which leads to the formation of a self-consistent pressure profile. This phenomenon has been investigated in the T-10 tokamak in different experiments, excluding profiles with pronounced transport barriers. It will be shown that the normalized pressure profile can be expressed by the equation p(N)(r) = p(r, t)/p(0, t), over a wide range of plasma densities. It will also be shown that p(N)(r) is independent of the heating power and the deposition profile of electron cyclotron resonance heating. Experiments show that p(N)(r) depends only on the value of q at the plasma edge. During rapid current ramp-ups it has been demonstrated that the conservation of p(N)(r) is established during a time t(c) < 0.1 tau(E), with tau(E) the energy confinement time. It can be concluded that the self-consistent pressure profile p(N)(r) in tokamaks is linked to the equilibrium of a turbulent plasma.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Self-consistent simulations of nonlinear magnetohydrodynamics and profile evolution in stellarator configurations
    Schlutt, M. G.
    Hegna, C. C.
    Sovinec, C. R.
    Held, E. D.
    Kruger, S. E.
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [32] Self-consistent modeling of feature profile evolution in plasma etching and deposition
    Shimada, Takashi
    Yagisawa, Takashi
    Makabe, Toshiaki
    Japanese Journal of Applied Physics, Part 2: Letters, 1600, 45 (4-7):
  • [33] FORMATION AND PROPERTIES OF SELF-CONSISTENT MALMBERG-PENNING TRAP
    Azarenkov, N. A.
    Bizyukov, A. A.
    Lapshin, V. I.
    Maslov, V. I.
    Onishchenko, I. N.
    Tarasov, I. K.
    Tarasov, M. I.
    Volkov, E. D.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2005, (01): : 140 - 142
  • [34] Self-consistent star formation histories of dwarf irregular galaxies
    Skillman, ED
    Dohm-Palmer, RC
    Kobulnicky, HA
    SIXTH TEXAS-MEXICO CONFERENCE ON ASTROPHYSICS: ASTROPHYSICAL PLASMAS NEAR AND FAR, 1997, 7 : 65 - 72
  • [35] Self-consistent formation of electron κ distribution:: 1.: Theory
    Yoon, Peter H.
    Rhee, Tongnyeol
    Ryu, Chang-Mo
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A9)
  • [36] Comment on self-consistent model of black hole formation and evaporation
    Pei-Ming Ho
    Journal of High Energy Physics, 2015
  • [37] A Self-Consistent Model for Positronium Formation from Helium Atoms
    Ebrahim Ghanbari-Adivi
    Brazilian Journal of Physics, 2012, 42 : 172 - 179
  • [38] A Self-Consistent Model for Positronium Formation from Helium Atoms
    Ghanbari-Adivi, Ebrahim
    BRAZILIAN JOURNAL OF PHYSICS, 2012, 42 (3-4) : 172 - 179
  • [39] Comment on self-consistent model of black hole formation and evaporation
    Ho, Pei-Ming
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08): : 1 - 16
  • [40] SELF-CONSISTENT BAND-STRUCTURE OF PRASEODYMIUM UNDER PRESSURE
    DE, SK
    CHATTERJEE, S
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1987, 17 (10): : 2057 - 2066