The main features of self-consistent pressure profile formation

被引:22
|
作者
Razumova, K. A. [1 ]
Andreev, V. F. [1 ]
Dnestrovskij, A. Yu [1 ]
Kislov, A. Ya [1 ]
Kirneva, N. A. [1 ]
Lysenko, S. E. [1 ]
Pavlov, Yu D. [1 ]
Poznyak, V. I. [1 ]
Shafranov, T. V. [1 ]
Trukhina, E. V. [1 ]
Zhuravlev, V. A. [1 ]
Donne, A. J. H. [2 ]
Hogeweij, G. M. D. [2 ]
机构
[1] RRC Kurchatov Inst, Nucl Fus Inst, Moscow 123182, Russia
[2] EURATOM, FOM, Inst Plasma Phys Rijnhuizen, Trilateral Euregio Cluster, NL-3430 BE Nieuwegein, Netherlands
关键词
D O I
10.1088/0741-3335/50/10/105004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The self-organization of a tokamak plasma is a fundamental turbulent plasma phenomenon, which leads to the formation of a self-consistent pressure profile. This phenomenon has been investigated in the T-10 tokamak in different experiments, excluding profiles with pronounced transport barriers. It will be shown that the normalized pressure profile can be expressed by the equation p(N)(r) = p(r, t)/p(0, t), over a wide range of plasma densities. It will also be shown that p(N)(r) is independent of the heating power and the deposition profile of electron cyclotron resonance heating. Experiments show that p(N)(r) depends only on the value of q at the plasma edge. During rapid current ramp-ups it has been demonstrated that the conservation of p(N)(r) is established during a time t(c) < 0.1 tau(E), with tau(E) the energy confinement time. It can be concluded that the self-consistent pressure profile p(N)(r) in tokamaks is linked to the equilibrium of a turbulent plasma.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] SELF-CONSISTENT COMPTON PROFILE OF SELENIUM
    KRUSIUS, P
    KRAMER, B
    SCHUTZ, O
    TREUSCH, J
    SOLID STATE COMMUNICATIONS, 1977, 21 (12) : 1127 - 1129
  • [2] Formation of self-consistent pressure profiles in simulation of turbulent convection in tokamak plasmas
    Pastukhov, V. P.
    Smirnov, D. V.
    PLASMA PHYSICS REPORTS, 2016, 42 (04) : 307 - 318
  • [3] Formation of self-consistent pressure profiles in simulation of turbulent convection in tokamak plasmas
    V. P. Pastukhov
    D. V. Smirnov
    Plasma Physics Reports, 2016, 42 : 307 - 318
  • [4] RESISTIVE PRESSURE-GRADIENT-DRIVEN TURBULENCE WITH SELF-CONSISTENT FLOW PROFILE EVOLUTION
    CARRERAS, BA
    LYNCH, VE
    GARCIA, L
    DIAMOND, PH
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (05): : 1491 - 1505
  • [5] Interpretation of tokamak self-consistent pressure profiles
    Dyabilin, K. S.
    Razumova, K. A.
    NUCLEAR FUSION, 2015, 55 (05)
  • [6] The system of self-consistent models for vapour pressure
    Toropova, Alla P.
    Toropov, Andrey A.
    Roncaglioni, Alessandra
    Benfenati, Emilio
    CHEMICAL PHYSICS LETTERS, 2022, 790
  • [7] Formation of nanocavities in dielectrics: A self-consistent modeling
    Mezel, C.
    Hallo, L.
    Bourgeade, A.
    Hebert, D.
    Tikhonchuk, V. T.
    Chimier, B.
    Nkonga, B.
    Schurtz, G.
    Travaille, G.
    PHYSICS OF PLASMAS, 2008, 15 (09)
  • [8] Self-consistent theory of pressure on doped Kondo insulators
    Zhang, S
    PHYSICS LETTERS A, 2001, 291 (01) : 51 - 60
  • [9] SELF-CONSISTENT PERIODIC QUARTET FORMATION IN NUCLEAR SURFACE
    JACKSON, AD
    DELLANO, M
    PLASTINO, A
    LETTERE AL NUOVO CIMENTO, 1976, 17 (16): : 524 - 528
  • [10] RESONANT ABSORPTION IN A SELF-CONSISTENT DENSITY PROFILE AT MODERATE INTENSITIES
    DAVID, F
    MORA, P
    PELLAT, R
    PHYSICS OF FLUIDS, 1983, 26 (03) : 747 - 754