Detection and Prediction of Bioprosthetic Aortic Valve Degeneration

被引:116
|
作者
Cartlidge, Timothy R. G. [1 ]
Doris, Mhairi K. [1 ]
Sellers, Stephanie L. [2 ]
Pawade, Tania A. [1 ]
White, Audrey C. [1 ]
Pessotto, Renzo [1 ]
Kwiecinski, Jacek [1 ]
Fletcher, Alison [3 ]
Alcaide, Carlos [1 ]
Lucatelli, Christophe [3 ]
Densem, Cameron [4 ]
Rudd, James H. F. [5 ]
van Beek, Edwin J. R. [3 ]
Tavares, Adriana [1 ]
Virmani, Renu [6 ]
Berman, Daniel [7 ]
Leipsic, Jonathon A. [2 ]
Newby, David E. [1 ]
Dweck, Marc R. [1 ]
机构
[1] Univ Edinburgh, British Heart Fdn, Ctr Cardiovasc Sci, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Queens Med Res Inst, Edinburgh Imaging Facil, Edinburgh, Midlothian, Scotland
[3] Univ British Columbia, St Pauls Hosp, Dept Radiol, Vancouver, BC, Canada
[4] Papworth Hosp NHS Fdn Trust, Dept Cardiol, Cambridge, England
[5] Univ Cambridge, Div Cardiovasc Med, Cambridge, England
[6] CVPath Inst, Gaithersburg, MD USA
[7] Cedars Sinai Heart Inst, Los Angeles, CA USA
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
aortic valve replacement; bioprosthetic valve degeneration; calcification; histology; positron emission tomography; SUBCLINICAL LEAFLET THROMBOSIS; PROSTHETIC HEART-VALVES; EUROPEAN ASSOCIATION; AMERICAN SOCIETY; FLUORIDE UPTAKE; TRANSCATHETER; ECHOCARDIOGRAPHY; RECOMMENDATIONS; CALCIFICATION; REPLACEMENT;
D O I
10.1016/j.jacc.2018.12.056
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Bioprosthetic aortic valve degeneration is increasingly common, often unheralded, and can have catastrophic consequences. OBJECTIVES The authors sought to assess whether 18F-fluoride positron emission tomography (PET)-computed tomography (CT) can detect bioprosthetic aortic valve degeneration and predict valve dysfunction. METHODS Explanted degenerate bioprosthetic valves were examined ex vivo. Patients with bioprosthetic aortic valves were recruited into 2 cohorts with and without prosthetic valve dysfunction and underwent in vivo contrast-enhanced CT angiography, 18F-fluoride PET, and serial echocardiography during 2 years of follow-up. RESULTS All ex vivo, degenerate bioprosthetic valves displayed 18F-fluoride PET uptake that colocalized with tissue degeneration on histology. In 71 patients without known bioprosthesis dysfunction, 14 had abnormal leaflet pathology on CT, and 24 demonstrated 18F-fluoride PET uptake (target-to-background ratio 1.55 [interquartile range (IQR): 1.44 to 1.88]). Patients with increased 18F-fluoride uptake exhibited more rapid deterioration in valve function compared with those without (annualized change in peak transvalvular velocity 0.30 [IQR: 0.13 to 0.61] vs. 0.01 [IQR: -0.05 to 0.16] ms(-1)/year; p < 0.001). Indeed 18F-fluoride uptake correlated with deterioration in all the conventional echocardiographic measures of valve function assessed (e. g., change in peak velocity, r <1/4> 0.72; p < 0.001). Each of the 10 patients who developed new overt bioprosthesis dysfunction during follow-up had evidence of 18F-fluoride uptake at baseline (targetto- background ratio 1.89 [IQR: 1.46 to 2.59]). On multivariable analysis, 18F-fluoride uptake was the only independent predictor of future bioprosthetic dysfunction. CONCLUSIONS 18F-fluoride PET-CT identifies subclinical bioprosthetic valve degeneration, providing powerful prediction of subsequent valvular dysfunction and highlighting patients at risk of valve failure. This technique holds major promise in the diagnosis of valvular degeneration and the surveillance of patients with bioprosthetic valves. (18F-Fluoride Assessment of Aortic Bioprosthesis Durability and Outcome [18F-FAABULOUS]; NCT02304276) (J Am Coll Cardiol 2019; 73: 1107-19) (c) 2019 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).
引用
收藏
页码:1107 / 1119
页数:13
相关论文
共 50 条
  • [31] Correlation Between Cardiac Computed Tomography and Histopathology for Evaluating Patients with Aortic Valve Disease
    Saucedo-Orozco, Huitzilihuitl
    Torres, Israel Perez
    Criales Vera, Sergio Andres
    Frausto, Alberto Arana
    Arias Godinez, Jose Antonio
    Guarner-Lans, Veronica
    Rubio, Esther
    Soto Lopez, Maria Elena
    ACADEMIC RADIOLOGY, 2022, 29 : S25 - S32
  • [32] Degeneration of prosthesis after transcatheter aortic valve implantation
    Costa, Giuliano
    Tamburino, Corrado
    Barbanti, Marco
    MINERVA CARDIOANGIOLOGICA, 2019, 67 (01): : 57 - 63
  • [33] Standardized Definitions for Bioprosthetic Valve Dysfunction Following Aortic or Mitral Valve Replacement
    Pibarot, Philippe
    Herrmann, Howard C.
    Wu, Changfu
    Hahn, Rebecca T.
    Otto, Catherine M.
    Abbas, Amr E.
    Chambers, John
    Dweck, Marc R.
    Leipsic, Jonathon A.
    Simonato, Matheus
    Rogers, Toby
    Sathananthan, Janarthanan
    Guerrero, Mayra
    Ternacle, Julien
    Wijeysundera, Harindra C.
    Sondergaard, Lars
    Barbanti, Marco
    Salaun, Erwan
    Genereux, Philippe
    Kaneko, Tsuyoshi
    Landes, Uri
    Wood, David A.
    Deeb, G. Michael
    Sellers, Stephanie L.
    Lewis, John
    Madhavan, Mahesh
    Gillam, Linda
    Reardon, Michael
    Bleiziffer, Sabine
    O'Gara, Patrick T.
    Rodes-Cabau, Josep
    Grayburn, Paul A.
    Lancellotti, Patrizio
    Thourani, Vinod H.
    Bax, Jeroen J.
    Mack, Michael J.
    Leon, Martin B.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 80 (05) : 545 - 561
  • [34] Prediction of paravalvular leakage after transcatheter aortic valve implantation
    Di Martino, Luigi F. M.
    Vletter, Wim B.
    Ren, Ben
    Schultz, Carl
    Van Mieghem, Nicolas M.
    Soliman, Osama I. I.
    Di Biase, Matteo
    de Jaegere, Peter P.
    Geleijnse, Marcel L.
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2015, 31 (07) : 1461 - 1468
  • [35] Modes of bioprosthetic valve failure: a narrative review
    Koziarz, Alex
    Makhdoum, Ahmad
    Butany, Jagdish
    Ouzounian, Maral
    Chung, Jennifer
    CURRENT OPINION IN CARDIOLOGY, 2020, 35 (02) : 123 - 132
  • [36] In Search of the Ideal Valve: Optimizing Genetic Modifications to Prevent Bioprosthetic Degeneration
    Smood, Benjamin
    Hara, Hidetaka
    Cleveland, David C.
    Cooper, David K. C.
    ANNALS OF THORACIC SURGERY, 2019, 108 (02) : 624 - 635
  • [37] Structural valve degeneration of bioprosthetic aortic valves: A network meta-analysis
    Squiers, John J.
    Robinson, N. Bryce
    Audisio, Katia
    Ryan, William H.
    Mack, Michael J.
    Rahouma, Mohamed
    Cancelli, Gianmarco
    Kirov, Hristo
    Doenst, Torsten
    Gaudino, Mario
    DiMaio, J. Michael
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2023, 166 (01) : 52 - 59
  • [38] Accelerated Degeneration of a Bovine Pericardial Bioprosthetic Aortic Valve in Children and Young Adults
    Saleeb, Susan F.
    Newburger, Jane W.
    Geva, Tal
    Baird, Christopher W.
    Gauvreau, Kimberlee
    Padera, Robert F.
    del Nido, Pedro J.
    Borisuk, Michele J.
    Sanders, Stephen P.
    Mayer, John E.
    CIRCULATION, 2014, 130 (01) : 51 - +
  • [39] Characteristics and Outcomes of Patients With Severe Bioprosthetic Aortic Valve Stenosis Undergoing Redo Surgical Aortic Valve Replacement
    Naji, Peyman
    Griffin, Brian P.
    Sabik, Joseph F.
    Kusunose, Kenya
    Asfahan, Fadi
    Popovic, Zoran B.
    Rodriguez, L. Leonardo
    Lytle, Bruce W.
    Grimm, Richard A.
    Svensson, Lars G.
    Desai, Milind Y.
    CIRCULATION, 2015, 132 (21) : 1953 - 1960
  • [40] The Unrelenting Search for Bioprosthetic Aortic Valve Durability
    Alkhouli, Mohamad
    JACC-CARDIOVASCULAR IMAGING, 2020, 13 (02) : 354 - 356