Detection and Prediction of Bioprosthetic Aortic Valve Degeneration

被引:116
|
作者
Cartlidge, Timothy R. G. [1 ]
Doris, Mhairi K. [1 ]
Sellers, Stephanie L. [2 ]
Pawade, Tania A. [1 ]
White, Audrey C. [1 ]
Pessotto, Renzo [1 ]
Kwiecinski, Jacek [1 ]
Fletcher, Alison [3 ]
Alcaide, Carlos [1 ]
Lucatelli, Christophe [3 ]
Densem, Cameron [4 ]
Rudd, James H. F. [5 ]
van Beek, Edwin J. R. [3 ]
Tavares, Adriana [1 ]
Virmani, Renu [6 ]
Berman, Daniel [7 ]
Leipsic, Jonathon A. [2 ]
Newby, David E. [1 ]
Dweck, Marc R. [1 ]
机构
[1] Univ Edinburgh, British Heart Fdn, Ctr Cardiovasc Sci, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Queens Med Res Inst, Edinburgh Imaging Facil, Edinburgh, Midlothian, Scotland
[3] Univ British Columbia, St Pauls Hosp, Dept Radiol, Vancouver, BC, Canada
[4] Papworth Hosp NHS Fdn Trust, Dept Cardiol, Cambridge, England
[5] Univ Cambridge, Div Cardiovasc Med, Cambridge, England
[6] CVPath Inst, Gaithersburg, MD USA
[7] Cedars Sinai Heart Inst, Los Angeles, CA USA
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
aortic valve replacement; bioprosthetic valve degeneration; calcification; histology; positron emission tomography; SUBCLINICAL LEAFLET THROMBOSIS; PROSTHETIC HEART-VALVES; EUROPEAN ASSOCIATION; AMERICAN SOCIETY; FLUORIDE UPTAKE; TRANSCATHETER; ECHOCARDIOGRAPHY; RECOMMENDATIONS; CALCIFICATION; REPLACEMENT;
D O I
10.1016/j.jacc.2018.12.056
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Bioprosthetic aortic valve degeneration is increasingly common, often unheralded, and can have catastrophic consequences. OBJECTIVES The authors sought to assess whether 18F-fluoride positron emission tomography (PET)-computed tomography (CT) can detect bioprosthetic aortic valve degeneration and predict valve dysfunction. METHODS Explanted degenerate bioprosthetic valves were examined ex vivo. Patients with bioprosthetic aortic valves were recruited into 2 cohorts with and without prosthetic valve dysfunction and underwent in vivo contrast-enhanced CT angiography, 18F-fluoride PET, and serial echocardiography during 2 years of follow-up. RESULTS All ex vivo, degenerate bioprosthetic valves displayed 18F-fluoride PET uptake that colocalized with tissue degeneration on histology. In 71 patients without known bioprosthesis dysfunction, 14 had abnormal leaflet pathology on CT, and 24 demonstrated 18F-fluoride PET uptake (target-to-background ratio 1.55 [interquartile range (IQR): 1.44 to 1.88]). Patients with increased 18F-fluoride uptake exhibited more rapid deterioration in valve function compared with those without (annualized change in peak transvalvular velocity 0.30 [IQR: 0.13 to 0.61] vs. 0.01 [IQR: -0.05 to 0.16] ms(-1)/year; p < 0.001). Indeed 18F-fluoride uptake correlated with deterioration in all the conventional echocardiographic measures of valve function assessed (e. g., change in peak velocity, r <1/4> 0.72; p < 0.001). Each of the 10 patients who developed new overt bioprosthesis dysfunction during follow-up had evidence of 18F-fluoride uptake at baseline (targetto- background ratio 1.89 [IQR: 1.46 to 2.59]). On multivariable analysis, 18F-fluoride uptake was the only independent predictor of future bioprosthetic dysfunction. CONCLUSIONS 18F-fluoride PET-CT identifies subclinical bioprosthetic valve degeneration, providing powerful prediction of subsequent valvular dysfunction and highlighting patients at risk of valve failure. This technique holds major promise in the diagnosis of valvular degeneration and the surveillance of patients with bioprosthetic valves. (18F-Fluoride Assessment of Aortic Bioprosthesis Durability and Outcome [18F-FAABULOUS]; NCT02304276) (J Am Coll Cardiol 2019; 73: 1107-19) (c) 2019 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).
引用
收藏
页码:1107 / 1119
页数:13
相关论文
共 50 条
  • [1] Serum lipoprotein(a) and bioprosthetic aortic valve degeneration
    Botezatu, Simona B.
    Tzolos, Evangelos
    Kaiser, Yannick
    Cartlidge, Timothy R. G.
    Kwiecinski, Jacek
    Barton, Anna K.
    Yu, Xinming
    Williams, Michelle C.
    van Beek, Edwin J. R.
    White, Audrey
    Kroon, Jeffrey
    Slomka, Piotr J.
    Popescu, Bogdan A.
    Newby, David E.
    Stroes, Erik S. G.
    Zheng, Kang H.
    Dweck, Marc R.
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2023, 24 (06) : 759 - 767
  • [2] Determinants of Bioprosthetic Aortic Valve Degeneration
    Nitsche, Christian
    Kammerlander, Andreas A.
    Knechtelsdorfer, Klaus
    Kraiger, Jakob A.
    Goliasch, Georg
    Dona, Carolina
    Schachner, Laurin
    Oeztuerk, Beguem
    Binder, Christina
    Duca, Franz
    Aschauer, Stefan
    Zimpfer, Daniel
    Bonderman, Diana
    Hengstenberg, Christian
    Mascherbauer, Julia
    JACC-CARDIOVASCULAR IMAGING, 2020, 13 (02) : 345 - 353
  • [3] Imaging of Bioprosthetic Valve Dysfunction after Transcatheter Aortic Valve Implantation
    Alwan, Louhai
    Bernhard, Benedikt
    Brugger, Nicolas
    de Marchi, Stefano F.
    Praz, Fabien
    Windecker, Stephan
    Pilgrim, Thomas
    Grani, Christoph
    DIAGNOSTICS, 2023, 13 (11)
  • [4] Sodium Fluoride PET and Aortic Bioprosthetic Valve Degeneration Implications for Patient Diagnosis, Management, and Treatment
    Fayad, Zahi A.
    Calcagno, Claudia
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (10) : 1120 - 1122
  • [5] Aortic Bioprosthetic Valve Durability Incidence, Mechanisms, Predictors, and Management of Surgical and Transcatheter Valve Degeneration
    Rodriguez-Gabella, Tania
    Voisine, Pierre
    Puri, Rishi
    Pibarot, Philippe
    Rodes-Cabau, Josep
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 70 (08) : 1013 - 1028
  • [6] Standardized Definition of Structural Valve Degeneration for Surgical and Transcatheter Bioprosthetic Aortic Valves
    Dvir, Danny
    Bourguignon, Thierry
    Otto, Catherine M.
    Hahn, Rebecca T.
    Rosenhek, Raphael
    Webb, John G.
    Treede, Hendrik
    Sarano, Maurice E.
    Feldman, Ted
    Wijeysundera, Harindra C.
    Topilsky, Yan
    Aupart, Michel
    Reardon, Michael J.
    Mackensen, G. Burkhard
    Szeto, Wilson Y.
    Kornowski, Ran
    Gammie, James S.
    Yoganathan, Ajit P.
    Arbel, Yaron
    Borger, Michael A.
    Simonato, Matheus
    Reisman, Mark
    Makkar, Raj R.
    Abizaid, Alexandre
    McCabe, James M.
    Dahle, Gry
    Aldea, Gabriel S.
    Leipsic, Jonathon
    Pibarot, Philippe
    Moat, Neil E.
    Mack, Michael J.
    Kappetein, A. Pieter
    Leon, Martin B.
    CIRCULATION, 2018, 137 (04) : 388 - 399
  • [7] Bioprosthetic valve thrombosis and degeneration following transcatheter aortic valve implantation (TAVI)
    Mirsadraee, S.
    Sellers, S.
    Duncan, A.
    Hamadanchi, A.
    Gorog, D. A.
    CLINICAL RADIOLOGY, 2021, 76 (01) : 73.e39 - 73.e47
  • [8] Bioprosthetic aortic valve durability in the era of transcatheter aortic valve implantation
    Salaun, Erwan
    Clavel, Marie-Annick
    Rodes-Capau, Josep
    Pibarot, Philippe
    HEART, 2018, 104 (16) : 1323 - 1332
  • [9] Rate, Timing, Correlates, and Outcomes of Hemodynamic Valve Deterioration After Bioprosthetic Surgical Aortic Valve Replacement
    Salaun, Erwan
    Mahjoub, Haifa
    Girerd, Nicolas
    Dagenais, Francois
    Voisine, Pierre
    Mohammadi, Siamak
    Yanagawa, Bobby
    Kalavrouziotis, Dimitri
    Juni, Peter
    Verma, Subodh
    Puri, Rishi
    Cote, Nancy
    Rodes-Cabau, Josep
    Mathieu, Patrick
    Clavel, Marie-Annick
    Pibarot, Philippe
    CIRCULATION, 2018, 138 (10) : 971 - 985
  • [10] Biomarkers of aortic bioprosthetic valve structural degeneration
    Salaun, Erwan
    Cote, Nancy
    Clavel, Marie-Annick
    Pibarot, Philippe
    CURRENT OPINION IN CARDIOLOGY, 2019, 34 (02) : 132 - 139