The Green rings of the generalized Taft Hopf algebras

被引:49
作者
Li, Libin [1 ]
Zhang, Yinhuo [2 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Peoples R China
[2] Univ Hasselt, Dept WNI, B-3590 Hasselt, Belgium
来源
HOPF ALGEBRAS AND TENSOR CATEGORIES | 2013年 / 585卷
关键词
Green ring; indecomposable module; generalized Taft algebra; nilpotent element; NILPOTENT ELEMENTS; ORDER; REPRESENTATIONS;
D O I
10.1090/conm/585/11618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the Green ring r(H-n,H-d) of the generalized Taft algebra H-n,H-d, extending the results of Chen, Van Oystaeyen and Zhang (to appear in Proc. of AMS). We shall determine all nilpotent elements of the Green ring r(H-n,H-d). It turns out that each nilpotent element in r(H-n,H-d) can be written as a sum of indecomposable projective representations. The Jacobson radical J(r(H-n,H-d)) of r(H-n,H-d) is generated by one element, and its rank is n - n/d. Moreover, we will present all the finite dimensional indecomposable representations over the complexified Green ring R(H-n,H-d) of H-n,H-d. Our analysis is based on the decomposition of the tensor product of indecomposable representations and the observation of the solutions for the system of equations associated to the generating relations of the Green ring r(H-n,H-d).
引用
收藏
页码:275 / +
页数:3
相关论文
共 32 条
[1]   Lifting of quantum linear spaces and pointed Hopf algebras of order p3 [J].
Andruskiewitsch, N ;
Schneider, HJ .
JOURNAL OF ALGEBRA, 1998, 209 (02) :658-691
[2]   On certain quotients of the Green rings of dihedral 2-groups [J].
Archer, Louise .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (08) :1888-1897
[3]  
Auslander M., 1995, REPRESENTATION THEOR, V36
[4]  
Benson D. J., 1985, LONDON MATH SOC LECT, V116, P181
[5]  
Chen H. X., P AMS IN PRESS
[6]   Finite-dimensional representations of a quantum double [J].
Chen, HX .
JOURNAL OF ALGEBRA, 2002, 251 (02) :751-789
[7]   Monomial Hopf algebras [J].
Chen, XW ;
Huang, HL ;
Ye, Y ;
Zhang, P .
JOURNAL OF ALGEBRA, 2004, 275 (01) :212-232
[8]  
Chin W., ARXIVMATH0609370V5MA
[9]   The projective class ring of basic and split Hopf algebras [J].
Cibils, C .
K-THEORY, 1999, 17 (04) :385-393
[10]   A QUIVER QUANTUM GROUP [J].
CIBILS, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :459-477