Optimization of the Investment Casting Process Using Genetic Algorithm

被引:2
作者
Pattnaik, Sarojrani [1 ]
Kumar, Sutar Mihir [1 ]
机构
[1] VSSUT, Dept Mech Engn, Sambalpur 768018, Odisha, India
来源
COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 2 | 2015年 / 32卷
关键词
Investment casting; Wax pattern; Surface roughness; Genetic algorithm; Optimization;
D O I
10.1007/978-81-322-2208-8_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a study in which an attempt has been made to improve the quality characteristic (surface finish) of the wax patterns used in the investment casting process. The wax blend consists of paraffin wax (20 %), carnauba wax (10 %), microcrystalline wax (20 %), polyethylene wax (10 %) and teraphenolic resin (40 %), which provided an improved pattern wax composition. The process parameters considered are injection temperature, holding time and die temperature. The injection process parameters are optimized by genetic algorithm. Further, verification test have been conducted at the obtained optimal setting of process parameters to prove the effectiveness of the method. Finally, a good agreement between the actual and the predicted results of surface roughness of the wax patterns has been found.
引用
收藏
页码:201 / 208
页数:8
相关论文
共 11 条
[1]  
Beeley P.R., 1995, Investment Casting
[2]  
CLEGG A J., 1991, Precision Casting Processes
[3]  
Horton R. A., 1987, INVESTMENT CASTING
[4]   Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm [J].
Kilickap, Erol ;
Huseyinoglu, Mesut ;
Yardimeden, Ahmet .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2011, 52 (1-4) :79-88
[5]   Developments in investment casting process-A review [J].
Pattnaik, Sarojrani ;
Karunakar, D. Benny ;
Jha, P. K. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2012, 212 (11) :2332-2348
[6]  
Rahmati S., RAPID PROTOTYPING J, V13, P115
[7]   A genetic algorithmic approach for optimization of surface roughness prediction model in dry milling [J].
Reddy, NSK ;
Rao, PV .
MACHINING SCIENCE AND TECHNOLOGY, 2005, 9 (01) :63-84
[8]  
Rezavand S. A. M., J MAT PROCESS TECHNO, V182, P580
[9]   Optimization of porosity formation in AlSi9Cu3 pressure die castings using genetic algorithm analysis [J].
Tsoukalas, V. D. .
MATERIALS & DESIGN, 2008, 29 (10) :2027-2033
[10]   Modelling and multi objective optimization of LM24 aluminium alloy squeeze cast process parameters using genetic algorithm [J].
Vijian, P. ;
Arunachalam, V. P. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 186 (1-3) :82-86