Infrared instability from nonlinear QCD evolution

被引:3
|
作者
Enberg, R
Peschanski, R [1 ]
机构
[1] CEA Saclay, Serv Phys Theor, URA 2306, F-91191 Gif Sur Yvette, France
[2] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA
关键词
D O I
10.1016/j.nuclphysa.2005.12.012
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Using the Balitsky-Kovchegov (BK) equation as an explicit example, we show that nonlinear QCD evolution leads to an instability in the propagation toward the infrared of the gluon transverse momentum distribution, if one starts with a state with an infrared cut-off. This effect takes the mathematical form of rapidly moving traveling wave solutions of the BK equation, which we investigate by numerical simulations. These traveling wave solutions are different from those governing the transition to saturation, which propagate towards the ultraviolet. The infrared wave speed, formally infinite for the leading order QCD kernel, is determined by higher order corrections. This mechanism could play a role in the rapid decrease of the mean free path in the Color Glass Condensate scenario for heavy ion collisions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:189 / 205
页数:17
相关论文
共 50 条
  • [41] Gyrokinetic particle simulation of nonlinear evolution of mirror instability
    Porazik, Peter
    Johnson, Jay R.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (11) : 7211 - 7218
  • [42] The plasma filamentation instability in one dimension: nonlinear evolution
    Rowlands, G.
    Dieckmann, M. E.
    Shukla, P. K.
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [43] Nonlinear evolution of the centrifugal instability using a semilinear model
    Yim, Eunok
    Billant, P.
    Gallaire, F.
    JOURNAL OF FLUID MECHANICS, 2020, 897
  • [44] Nonlinear evolution of a morphological instability in a strained epitaxial film
    Aqua, Jean-Noel
    Frisch, Thomas
    Verga, Alberto
    PHYSICAL REVIEW B, 2007, 76 (16):
  • [45] NONLINEAR PROGRESSIVE EDGE WAVES: THEIR INSTABILITY AND EVOLUTION.
    Yeh, Harry H.
    Journal of Fluid Mechanics, 1985, 152 : 479 - 499
  • [46] NONLINEAR EVOLUTION OF ELECTRON-BEAM-PLASMA INSTABILITY
    IKEZI, H
    CHANG, RPH
    STERN, RA
    PHYSICAL REVIEW LETTERS, 1976, 36 (17) : 1047 - 1051
  • [47] Nonlinear stage of instability evolution in a monostable active medium
    Pukhov, AA
    TECHNICAL PHYSICS LETTERS, 1998, 24 (07) : 545 - 546
  • [48] Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: From fluid to kinetic modeling
    Henri, P.
    Cerri, S. S.
    Califano, F.
    Pegoraro, F.
    Rossi, C.
    Faganello, M.
    Sebek, O.
    Travnicek, P. M.
    Hellinger, P.
    Frederiksen, J. T.
    Nordlund, A.
    Markidis, S.
    Keppens, R.
    Lapenta, G.
    PHYSICS OF PLASMAS, 2013, 20 (10)
  • [49] Secondary tearing mode in the nonlinear evolution of magnetorotational instability
    Tatsuno, T.
    Dorland, W.
    ASTRONOMISCHE NACHRICHTEN, 2008, 329 (07) : 688 - 700
  • [50] Nonlinear Evolution of the Tearing Instability in a Thin Current Sheet
    Garanin, S. F.
    Kravets, E. M.
    PLASMA PHYSICS REPORTS, 2023, 49 (11) : 1261 - 1274