Some Convergence Properties of Multi-Step Prediction Error Identification Criteria

被引:10
作者
Farina, Marcello [1 ]
Piroddi, Luigi [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron & Informaz, Milan, Italy
来源
47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008) | 2008年
关键词
D O I
10.1109/CDC.2008.4738744
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-step prediction error identification methods are preferred over plain one-step ahead prediction error ones in application contexts (e.g., predictive control) where model accuracy is required over a wide horizon. For sufficiently high prediction horizons, their properties can be shown to be conveniently related to those of output error methods, for which several important issues (e.g., uniqueness of estimation, robustness with respect to the noise model) have been characterized in the literature. The convergence properties of such criteria with respect to the prediction horizon are analyzed.
引用
收藏
页码:756 / 761
页数:6
相关论文
共 16 条
  • [1] Nonparametric multistep-ahead prediction in time series analysis
    Chen, R
    Yang, LJ
    Hafner, C
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 669 - 686
  • [2] Prediction- and simulation-error based perceptron training: Solution space analysis and a novel combined training scheme
    Connally, Patrick
    Li, Kang
    Irwin, George W.
    [J]. NEUROCOMPUTING, 2007, 70 (4-6) : 819 - 827
  • [3] Gopaluni R. B., 2002, IFAC WORLD C BARC SP, P2196
  • [4] MPC relevant identification - tuning the noise model
    Gopaluni, RB
    Patwardhan, RS
    Shah, SL
    [J]. JOURNAL OF PROCESS CONTROL, 2004, 14 (06) : 699 - 714
  • [5] Jorgensen S. B., 2007, AM CONTR C NEW YORK, P140
  • [6] Jorgensen S. B., 2007, AM CONTR C NEW YORK, P128
  • [7] Towards long-term prediction
    Judd, K
    Small, M
    [J]. PHYSICA D, 2000, 136 (1-2): : 31 - 44
  • [8] Ljung L, 1999, SYSTEM IDENTIFICATIO
  • [9] Narendra K S, 1990, IEEE Trans Neural Netw, V1, P4, DOI 10.1109/72.80202
  • [10] PIRODDI L, 2003, 13 IFAC S SYST ID RO, P371