Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks

被引:220
|
作者
Jagtap, Ameya D. [1 ]
Kawaguchi, Kenji [2 ]
Karniadakis, George Em [1 ,3 ]
机构
[1] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Pacific Northwest Natl Lab, Richland, WA 99354 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2020年 / 476卷 / 2239期
关键词
physics-informed neural networks; machine learning; bad minima; stochastic gradients; accelerated training; deep learning benchmarks;
D O I
10.1098/rspa.2020.0334
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose two approaches of locally adaptive activation functions namely, layer-wise and neuron-wise locally adaptive activation functions, which improve the performance of deep and physics-informed neural networks. The local adaptation of activation function is achieved by introducing a scalable parameter in each layer (layer-wise) and for every neuron (neuron-wise) separately, and then optimizing it using a variant of stochastic gradient descent algorithm. In order to further increase the training speed, an activation slope-based slope recovery term is added in the loss function, which further accelerates convergence, thereby reducing the training cost. On the theoretical side, we prove that in the proposed method, the gradient descent algorithms are not attracted to sub-optimal critical points or local minima under practical conditions on the initialization and learning rate, and that the gradient dynamics of the proposed method is not achievable by base methods with any (adaptive) learning rates. We further show that the adaptive activation methods accelerate the convergence by implicitly multiplying conditioning matrices to the gradient of the base method without any explicit computation of the conditioning matrix and the matrix-vector product. The different adaptive activation functions are shown to induce different implicit conditioning matrices. Furthermore, the proposed methods with the slope recovery are shown to accelerate the training process.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Spiking Physics-Informed Neural Networks on Loihi 2
    Theilman, Bradley H.
    Zhang, Qian
    Kahana, Adar
    Cyr, Eric C.
    Trask, Nathaniel
    Aimone, James B.
    Karniadakis, George Em
    2024 NEURO INSPIRED COMPUTATIONAL ELEMENTS CONFERENCE, NICE, 2024,
  • [42] Physics-Informed Neural Networks for solving transient unconfined groundwater flow
    Secci, Daniele
    Godoy, Vanessa A.
    Gomez-Hernandez, J. Jaime
    COMPUTERS & GEOSCIENCES, 2024, 182
  • [43] Multiphysics generalization in a polymerization reactor using physics-informed neural networks
    Ryu, Yubin
    Shin, Sunkyu
    Lee, Won Bo
    Na, Jonggeol
    CHEMICAL ENGINEERING SCIENCE, 2024, 298
  • [44] Physics-Informed Neural Networks for the Reynolds Equation with Transient Cavitation Modeling
    Brumand-Poor, Faras
    Barlog, Florian
    Plueckhahn, Nils
    Thebelt, Matteo
    Bauer, Niklas
    Schmitz, Katharina
    LUBRICANTS, 2024, 12 (11)
  • [45] Physics-informed neural networks for modeling hysteretic behavior in magnetorheological dampers
    Wu, Yuandi
    Sicard, Brett
    Kosierb, Patrick
    Appuhamy, Raveen
    McCafferty-Leroux, Alex
    Gadsden, S. Andrew
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS VI, 2024, 13051
  • [46] Inverse design of microwave waveguide devices based on deep physics-informed neural networks
    Liu, Jin-Pin
    Wang, Bing-Zhong
    Chen, Chuan-Sheng
    Wang, Ren
    ACTA PHYSICA SINICA, 2023, 72 (08)
  • [47] Meta-learning Loss Functions of Parametric Partial Differential Equations Using Physics-Informed Neural Networks
    Koumpanakis, Michail
    Vilalta, Ricardo
    DISCOVERY SCIENCE, DS 2024, PT I, 2025, 15243 : 183 - 197
  • [48] Solving nonlinear soliton equations using improved physics-informed neural networks with adaptive mechanisms
    Guo, Yanan
    Cao, Xiaoqun
    Peng, Kecheng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (09)
  • [49] Physics-Informed Neural Networks for Heat Pump Load Prediction
    Chifu, Viorica Rozina
    Cioara, Tudor
    Pop, Cristina Bianca
    Anghel, Ionut
    Pelle, Andrei
    ENERGIES, 2025, 18 (01)
  • [50] On the Application of Physics-Informed Neural Networks in the Modeling of Roll Waves
    Martins da Silva, Bruno Fagherazzi
    Rocho, Valdirene da Rosa
    Dorn, Marcio
    Fiorot, Guilherme Henrique
    ADVANCES IN HYDROINFORMATICS, VOL 2, SIMHYDRO 2023, 2024, : 89 - 106