Direct identification method of second order plus time delay model parameters

被引:5
|
作者
Yoo, CK [1 ]
Kwak, HS [1 ]
Lee, IB [1 ]
机构
[1] Pohang Univ Sci & Technol, Ctr Automat Res, Dept Chem Engn, Pohang 790784, South Korea
来源
CHEMICAL ENGINEERING RESEARCH & DESIGN | 2001年 / 79卷 / A7期
关键词
second order plus time delay model (SOPTD); Taylor expansion; frequency weighting function; identification; least squares method;
D O I
10.1205/026387601753191939
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this paper, we propose an identification method to estimate the second order plus time delay (SOPTD) model parameters. The proposed method directly obtains these parameters using a frequency-weighted integral transform and a least-squares method, without iterative calculation step. This calculation procedure can be applied regardless of initial states, in contrast to almost all previous identification methods, which require the assumption of zero initial states. In addition, it does not require any additional model reduction steps to tune the PID controller. Using simulations, it is demonstrated that the proposed method provides better modeling performance than previous methods, in spite of its simplicity. The new method shows an acceptable robustness to disturbance and measurement noise.
引用
收藏
页码:754 / 764
页数:11
相关论文
共 50 条
  • [41] New Parameter Identification Method for the Fractional Order, State Space Model of Heat Transfer Process
    Oprzedkiewicz, Krzysztof
    Dziedzic, Klaudia
    AUTOMATION 2018: ADVANCES IN AUTOMATION, ROBOTICS AND MEASUREMENT TECHNIQUES, 2018, 743 : 401 - 417
  • [42] A Method for FES Control of Human Knee Joint with Time-dependent Model Parameters
    Li, Zhan
    Yin, Ziguang
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2019, : 1302 - 1306
  • [43] New tuning and identification methods for unstable first order plus dead-time processes based on pseudoderivative feedback control
    Paraskevopoulos, PN
    Pasgianos, GD
    Arvanitis, KG
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2004, 12 (03) : 455 - 464
  • [44] The parameters identification of airplane flutter model based global nonlinear separable least square method
    Yao, Jie
    Wang, Jianhong
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 2774 - +
  • [45] Leak Localization Method of Jet Fuel Pipeline Based on Second-Generation Wavelet Transform and Short-Time Energy Time Delay Estimation
    Zhu, Yongqiang
    Lang, Xianming
    Zhang, Lin
    Cai, Zefeng
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 2823 - 2832
  • [46] Identification of nonlinear continuous-time Hammerstein model via HMF-method
    Daniel-Berhe, S
    Unbehauen, H
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 2990 - 2995
  • [47] Identification of Dynamic Parameters of a Fourth-Order Synchronous Generator Nonlinear Model Using Particle Swarm Optimization Algorithm
    Khereshki, Nader Imani
    Choolabi, Esmael Fallah
    Shahalami, Seyed Hamid
    2017 25TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2017, : 1170 - 1174
  • [48] Investigating Reliability on Fuel Cell Model Identification. Part II: An Estimation Method for Stochastic Parameters
    Tsikonis, L.
    Diethelm, S.
    Seiler, H.
    Nakajo, A.
    Van Herle, J.
    Favrat, D.
    FUEL CELLS, 2012, 12 (05) : 685 - 708
  • [49] A numerical-experimental coupled method for the identification of model parameters from μ-SPIF test using a finite element updating method
    Belouettar, Karim
    Thibaud, Sebastien
    Ouali, Mohand Ould
    Harouche, Mohamed Karim
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 128 (11-12): : 5195 - 5208
  • [50] Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method
    Sigrist, Zoe
    Grivel, Eric
    Alcoverro, Benoit
    SIGNAL PROCESSING, 2012, 92 (04) : 1010 - 1020